(19)

(11)

EP 3203295 B1
(12)

EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention
of the grant of the patent:
25.08.2021 Bulletin 2021/34
(21) Application number: 14902940.7
(22) Date of filing: 01.10.2014
(51) Int CI.:

GO2B 21/32 ${ }^{(2006.01)}$ B25J 7/00 ${ }^{(2006.01)}$
(86) International application number:

PCT/JP2014/076331
(87) International publication number: WO 2016/051563 (07.04.2016 Gazette 2016/14)
(54) METHOD FOR POSITIONING MICRO-TOOL AND MICRO-MANIPULATOR DEVICE

VERFAHREN ZUR POSITIONIERUNG EINES MIKROWERKZEUGS UND MIKROMANIPULATORVORRICHTUNG

PROCÉDÉ DE POSITIONNEMENT DE MICRO-OUTIL ET DISPOSITIF MICROMANIPULATEUR
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(43) Date of publication of application:
09.08.2017 Bulletin 2017/32
(73) Proprietor: Narishige Lifemed Co., Ltd.

Tokyo 157-0062 (JP)
(72) Inventor: NOMURA Toru Tokyo 157-0062 (JP)
(74) Representative: Reichert \& Lindner

Partnerschaft Patentanwälte
Stromerstr. 2A
93049 Regensburg (DE)
(56) References cited:

EP-A1-2 541300 JP-A- 2002333387
JP-A- 2008046324 JP-A- 2009058931
JP-A- 2009229448 JP-A- 2011013223
US-A- 4920053

- None Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

TECHNICAL FIELD

[0001] The present invention relates to a method for positioning a micro-tool and a micro-manipulator device which are used for positioning a front end portion of a capillary, a pipette, a micro-sampling tool, a micro needle, an electrode, tweezers, a knife, a forceps, or the like (hereinafter, called a "micro-tool"), which are used when, for example, microinsemination (icsi) where a sperm is directly injected into an ovum, in vitro fertilization (ivf), or an actual operation on various micro objects such as a cell, a fungus, a micro animal, dust, and powder, is carried out, for focusing of a microscope, or for the like.

BACKGROUND ART

[0002] Conventionally, when microinsemination or in vitro fertilization is carried out, a micro-manipulator device, which has a microscope and a micro-manipulator that moves a micro-tool in three-dimensional directions in a visual field of the microscope, and carries out a fine operation such as an injection or suction, has been used (for example, refer to a patent document 1).
[0003] A micro-manipulator device described in the patent document 1 is a device which can operate a micro-tool such as a micro-pipette in fine movements under a microscope by remote control under the hydraulic pressure such as oil pressure when an inspection object (sample) such as an organ of an animal, biotissue, or a cell is held or moved, and a fine movement operation such as suction, injection of a liquid, or cutting is carried out on the inspection object.
[0004] In particular, when a fine operation is carried out on an inspection object with use of the micro-tool in an actual operation such as microinsemination or in vitro fertilization, a rapid and precise operation is required.

PRIOR ART DOCUMENT

PATENT DOCUMENT

[0005]
Patent document 1: JP3295836, B
Patent document 2: US 4,920,053 A discloses a method for positioning a micro-tool (glass stylus) of a micromanipulator device by using a positioning gauge (vertically moving handle / manipulation handle / operating handle 16 c) of the micro-manipulator device, which are arranged in an angular manner. The micro-manipulator device has a holding part (T-shaped arm) which is constructed to detachably hold micro-tool, but which is not capable of also detachably holding the positioning gauge.
Patent document 3: EP 2541300 A1 discloses a method for positioning a micro-tool, wherein a driving device with an X - and Y -axis table 26 and a Z -axis table represent a positioning gauge for a micro-tool (pipette).

SUMMARY OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0006] However, in the actual operation, a size of the inspection object and a diameter of the needle tip of the microtool are about a few microns, that is, minimal, and distances (operation ranges in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-directions) from an inner bottom surface of a dish for putting the inspection object therein to the inspection object at the time of operation-working are extremely short. Therefore, there has been a problem that an adjustment operation for adjusting a position in a height direction is hard.
[0007] In particular, when an angle and/or positions in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-directions of the micro-tool are initially set (needleposition adjustment), or when the microscope is focused, since distances from the inner bottom surface of the dish to the positions to be set are a few microns, that is, short, the needle tip sometimes comes into contact with the surface of the dish, so that the needle tip is sometimes bent or damaged. Accordingly, the micro-tool often needs to be changed, so that there has been a problem that it takes a time to change it.
[0008] And furthermore, the needle tip of the micro-tool is extremely delicate, so that it is necessary for the needle tip not to be come into contact with the inner bottom surface of the dish and to be set carefully. Therefore, operation-working for the initial setting (positioning) of the micro-tool has been an operation requiring a skill and a time.
[0009] Furthermore, conventionally, when a plurality of kinds of micro-tool are used, a shape, a length, a position of the needle tip, and an angle of the needle vary for each micro-tool, so that there has been a problem that positioning
operation is hard and a time is required when a microscope is focused.
[0010] Such operation is desired to be carried out with use of a high-powered microscope, but a visual field of the high-powered microscope is narrow, so that positioning of the needle tip becomes harder. That is, there is a problem that work efficiency and workability are low.
[0011] The present invention is created in view of such problems. It is an object of the present invention to provide a method for positioning a micro-tool and a micro-manipulator device by which the micro-tool can be rapidly, precisely and easily positioned to be attached.

MEANS FOR SOLVING THE PROBLEMS

[0012] In order to solve the problems, a method for positioning a micro-tool according to the present invention is defined in claim 1 and includes:
a positioning gauge positioning process including placing a gauge surface of a positioning gauge at a needle tip position while the positioning gauge is fixed to a holding part, and aligning a mark provided in the positioning gauge with an optical axis of an object lens; and
a micro-tool attachment process including fixing the micro-tool to the holding part after removing the positioning gauge from the holding part.
[0013] The "micro-tool" is a member for carrying out a series of operations such as separating, classifying, processing, selecting, treating on a fine particle such as an ovum, a cell, a fungus in a field such as a medical field, a pharmaceutical field, an outbreak engineering field, a livestock industry or a biotechnology industry like breeding, or a chemical industry field. For example, the micro-tool is a capillary, a pipette, a micro-pipette, a micro-sampling tool, an electrode made of glass or the like, a micro needle, a fine tubule, or the like.
[0014] According to this constitution, in the method for positioning a micro-tool, after the positioning process, in which the gauge surface is placed at the needle tip position while the positioning gauge is fixed to the holding part and the mark is aligned with the optical axis, is carried out, the micro-tool attachment process, in which the micro-tool is fixed to the holding part after removing the positioning gauge from the holding part, is carried out. Thus the positioning operation is carried out. Therefore, after the positioning gauge is positioned at a position near a front end portion of the micro-tool, only by attaching the micro-tool in place of the positioning gauge, the positioning operation is finished. Therefore, the micro-tool can be attached in a short time and at a correct position and angle by a simple operation. Furthermore, a complex positioning operation becomes easy, so that work efficiency and workability of the positioning operation can be improved. Therefore, even a person without skill can carry out an accurate positioning rapidly and repeatedly. In addition, since the positioning operation does not need to be carried out directly with use of a micro-tool, the micro-tool can be prevented from being damaged. Furthermore, a micro-tool of the present invention does not need to be moved to a position extremely near a position where the micro-tool is actually used after the micro-tool is positioned at a virtual position as conventionally having carried out. Therefore, the positioning operation for a micro-tool according to the present invention can be rapidly carried out.
[0015] Furthermore, it is preferred that a positioning gauge focus adjustment process to focus on the mark in a state where the positioning gauge has been positioned in the positioning gauge positioning process is included.
[0016] According to this constitution, since the method for positioning a micro-tool is carried out in the state where the positioning gauge has been positioned in the positioning gauge focus adjustment process to focus on the mark, a focus position can be easily positioned.
[0017] Furthermore, according to the invention the positioning gauge has a gauge attachment part provided at a position away from the mark formed at a front end portion toward a base end side of the positioning gauge by a prescribed distance set beforehand, and that the micro-tool has a tool attachment part provided at a position away from a front end toward a base end side of the micro-tool by the same distance as the prescribed distance.
[0018] According to this constitution, since the distance from the front end portion to the gauge attachment part of the positioning gauge is the same as the distance from the front end to the tool attachment part of the micro-tool, by positioning the positioning gauge and replacing it with the micro-tool, the micro-tool can be attached by a single operation. Therefore, the positioning operation to position the micro-tool becomes simple and easy, so that it can be carried out correctly and rapidly.
[0019] Furthermore, it is preferred that the positioning gauge is held by the holding part in an upward oblique posture positioned on and above an inner bottom surface of a dish placed at a prescribed position on a table of a microscope, that the gauge surface is formed to be flat at a front end portion of the positioning gauge and is placed on the inner bottom surface of the dish at a time of positioning, and that the mark is formed to be orthogonal to the gauge surface, and is positioned on the optical axis at the time of positioning.
[0020] According to this constitution, the positioning gauge is positioned by placing the gauge surface on the inner
bottom surface of the dish and positioning the mark on the optical axis at a time of positioning. As the gauge surface is formed to be orthogonal to the mark, even when the positioning gauge is disposed obliquely, the mark can be set to be parallel to the inner bottom surface of the dish at a prescribed position of the inner bottom surface. Therefore, the positioning of the positioning gauge can be correctly carried out.
[0021] Furthermore, it is preferred that the holding part is provided in a movement mechanism for moving the positioning gauge detachably attached to the holding part, that the movement mechanism includes a rotation mechanism for pivoting the holding part holding the positioning gauge around the mark formed at the front end portion of the positioning gauge, and a linear movement mechanism for linearly moving the holding part in T-directions along the positioning gauge, to position the positioning gauge, and that the micro-tool is attached after the holding part holding the positioning gauge, positioning of which has been finished, releases the positioning gauge in a state of fixing a position on a Y-axis.
[0022] According to this constitution, since the movement mechanism provided with the holding part has the rotation mechanism configured to be capable of pivoting around the mark, even in the case where the positioning gauge or the micro-tool is pivoted to be inclined by the movement mechanism, the position of the front end of the positioning gauge or the micro-tool never deviates from the center position of the mark. Furthermore, by the movement mechanism including the linear movement mechanism for linearly moving the holding part in the T-directions of the positioning gauge, after the holding part is moved backward in the state where positioning has been finished, the movement mechanism can move the holding part forward to return to the original position which has been determined by the positioning. Therefore, the positioning operation for a micro-tool can be simplified, so that work efficiency and workability can be improved. Even in the case where the positioning gauge or the micro-tool is pivoted by the movement mechanism, the position of the front end of the positioning gauge or the micro-tool never shifts. Furthermore, since the holding part holding the positioning gauge which has been positioned is fixed on the Y -axis, the holding part never shifts in the Y -axis direction. Therefore, positioning can be easily carried out. By the movement mechanism including the linear movement mechanism for linearly moving the holding part in the T-directions of the positioning gauge, after the holding part is moved backward in the state where positioning has been finished, the movement mechanism can move the holding part forward to return to the original position which has been determined by the positioning. Therefore, the positioning operation for a microtool can be simplified, so that work efficiency and workability can be improved.
[0023] It is preferred that the linear movement mechanism advances the holding part to return to a position where the positioning gauge has been positioned after the holding part holding the positioning gauge, positioning of which has been finished in the positioning gauge positioning process, is retreated.
[0024] According to this constitution, by the linear movement mechanism, the holding part can be moved forward to return to the original position which has been determined by the positioning after the holding part holding the positioning gauge, positioning of which has been finished, is retreated. For this reason, by replacing the positioning gauge with the micro-tool to be attached after the positioning gauge is retreated while the holding part holds the positioning gauge having been positioned, the holding part never shifts in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-axis directions. Thus, without directly positioning the micro-tool itself, the micro-tool can be set at the position which has been determined. That is, the positioning of the micro-tool can be carried out simply and easily.
[0025] A micro-manipulator device according to the present invention is defined in claim 6 and includes:
a micro-tool having a tool attachment part provided at a position away from a front end toward a base end side of the micro-tool by a prescribed distance set beforehand, and
a micro-manipulator for carrying out micro operation for an inspection object in a visual field of a microscope with use of the micro-tool, and is characterized in that the micro-manipulator device further includes:
a holding part to detachably hold the micro-tool or a positioning gauge having a gauge attachment part provided at a position away from a mark provided at a front end portion toward a base end side of the positioning gauge by the prescribed distance; and
a movement mechanism for positioning the positioning gauge in T -axis directions.
[0026] According to this constitution, the micro-manipulator device according to the present invention includes the movement mechanism which positions the holding part to detachably hold the micro-tool or the positioning gauge in the T-axis directions. Therefore, by exchanging the positioning gauge having been positioned for the micro-tool and attaching the micro-tool, the positioning can be carried out. Therefore, it is not necessary to adjust a position of the micro-tool each time when the micro-tool is attached to the micro-manipulator device. For this reason, the micro-tool can be correctly attached in a short time and the positioning operation can be rapidly carried out.
[0027] And furthermore, it is preferred that the movement mechanism includes:
a rotation mechanism for pivoting the holding part holding the positioning gauge around the mark provided at the front end portion of the positioning gauge; and
a linear movement mechanism for linearly moving the holding part in the T -axis directions along the positioning gauge.
[0028] According to this constitution, the movement mechanism includes the rotation mechanism configured to be capable of pivoting the holding part around the mark, so that the position of the front end of the positioning gauge or the micro-tool does not shift when the positioning gauge or the micro-tool is pivoted by the rotation mechanism. Furthermore, the movement mechanism includes the linear movement mechanism for linearly moving the holding part in the T-axis directions along the positioning gauge, so that after the holding part is moved backward in the state where positioning has been finished, the holding part can be moved forward to return to the original position which has been determined by the positioning. Therefore, the positioning operation for a micro-tool can be simplified, so that work efficiency and workability can be improved.

EFFECT OF THE INVENTION

[0029] By the method for positioning a micro-tool or the micro-manipulator device according to the present invention, the micro-tool can be correctly attached in a short time.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030]
FIG. 1 is a schematic side view showing a micro-manipulator device, to which a micro-tool is attached, according to an embodiment of the present invention;
FIG. 2A is a schematic plan view showing the micro-tool;
FIG. 2B is a side view of a front end portion of the micro-tool;
FIG. 3 is a schematic side view showing the device to which a positioning gauge is attached;
FIG. 4A is a middle-positioned longitudinal sectional view of the positioning gauge;
FIG. 4B is an enlarged partial bottom view showing a front end portion and a rear end portion of the positioning gauge;
FIG. 4C is an enlarged partial view of a front end portion of FIG. 4A;
FIG. 4D is an enlarged partial bottom view showing a front end portion of the positioning gauge disposed on the optical axis and on a dish;
FIG. 5 is a schematic enlarged partial broken side view showing a movement mechanism;
FIG. 6 is a schematic enlarged side view showing the movement mechanism;
FIG. 7 is a schematic plan view taken from the line I - I in FIG. 5;
FIG. 8 is a flow chart showing a method of positioning the micro-tool;
FIG. 9A is a schematic side view of a modified example of the micro-tool of the micro-manipulator device according to the embodiment of the present invention;
FIG. 9B is a schematic side view of another modified example of the micro-tool of the micro-manipulator device according to the embodiment of the present invention;
FIG. 9C is a schematic side view of still another modified example of the micro-tool of the micro-manipulator device according to the embodiment of the present invention;
FIG. 10 shows a first modified example of the positioning gauge of the micro-manipulator device according to the embodiment of the present invention, and is a schematic side view showing an attached state of the micro-tool in place of the positioning gauge having been positioned;
FIG. 11 is an enlarged partial schematic sectional view of a second modified example of the positioning gauge of the micro-manipulator device according to the embodiment of the present invention;
FIG. 12 is a schematic perspective view of a third modified example of the micro-manipulator device according to the embodiment of the present invention;
FIG. 13 is a schematic perspective view of a fourth modified example of the micro-tool of the micro-manipulator device according to the embodiment of the present invention;
FIG. 14A is an enlarged schematic perspective view of a length-adjustment gauge of the fourth modified example of the present invention when it is installed in the micro-tool;
FIG. 14B is an enlarged schematic perspective view of the length-adjustment gauge of the fourth modified example of the present invention when it is housed in the micro-tool;
FIG. 15A is an enlarged schematic perspective view of a fifth modified example of the length-adjustment gauge of the micro-manipulator device according to the embodiment of the present invention when it is installed; and FIG. 15B is an enlarged schematic perspective view of the fifth modified example of the length-adjustment gauge of the micro-manipulator device according to the embodiment of the present invention when it is housed.

MODE FOR CARRYING OUT THE INVENTION

[0031] Next, a micro-manipulator device according to an embodiment of the present invention will be explained with reference to Figure 1 to Figure 8.
[0032] Note that, the micro-manipulator device 1 can be used for positioning the above-said various micro-tools 4. Hereinafter, an example, in which a capillary (or a pipette) is considered to be the micro-tool 4 , will be explained, which capillary is used when an actual operation such as microinsemination or in vitro fertilization is carried out.
[0033] In advance of an explanation of the micro-manipulator device 1 according to the embodiment of the present invention, an inspection object S to be operated by using the micro-manipulator device 1 will be explained.
<<Inspection Object>>
[0034] The inspection object S shown in Figure 2A is, for example, an ovum to be used in an actual operation such as microinsemination or in vitro fertilization, is placed on an inner bottom surface 7a of a dish 7, and is covered with oil or a solution (liquid medicine), and a sperm is injected into the inspection object S (ovum) through the micro-tool 4. The inspection object S is placed on an optical axis 62a on the inner bottom surface 7a of the dish 7 .
<<Micro-manipulator Device>>
[0035] As shown in Figure 1, the micro-manipulator device 1 is a device which is used for injecting a sperm into the inspection object S (ovum) when microinsemination or in vitro fertilization is carried out. The micro-manipulator device 1 is provided with a microscope 6 , a micro-manipulator 2 , a positioning gauge 5 , a holding part 30 , and a movement mechanism 3. The micro-manipulator 2 carries out, in a visual field of the microscope 6 , micro operations such as threedimensional movements of the micro-tool 4 , and injecting a sperm into or suctioning the sperm out of the ovum. The positioning gauge 5 has a gauge attachment part 5 c . The holding part 30 holds the micro-tool 4 detachably. The movement mechanism 3 adjusts a position of the positioning gauge 5 in a Y (Y-axis) direction.

<Microscope>

[0036] The microscope 6 is an inverted microscope unit to be used at the time of positioning a needle tip of the microtool 4 and setting an angle of the micro-tool 4 to be in a predetermined-angle state, or at the time of carrying out a delicate operation such that a sperm is injected into the small inspection object S by using the micro-manipulator device 1. The microscope 6 is provided with a base not shown, a column (not shown) installed on the base, a table 61 attached to the column, an objective lens 62 disposed below the table 61, a light source 63 disposed above the table 61, a light collector 64 disposed between the light source 63 and the table 61, and a diaphragm disposed between the light collector 64 and the light source 63. The size of the visual field of the microscope 6 is around several millimeters in a front-rear and a left-right directions as shown in the front-rear direction in Figure 4D, for example, in the case of low magnification of 40 times. Note that, the microscope 6 may be an upright type one. Furthermore, the microscope 6 can be adopted even if it is a microscope of high magnification, however, an example of the case of 40 times will be explained.
[0037] The table 61 is a plate-like member horizontally attached to the column of the base not shown, and has an opening 61a.
[0038] The objective lens 62 is upwardly disposed under the table 61, and roughly on a center line passing the center of the opening 61a (note that, it may be located not on the center line of the opening 61a). On the optical axis 62a of the objective lens 62, the dish 7 , the light collector 64 , and the light source 63 are disposed so that respective centers of them are located on the optical axis. At the time of initial gauge-fitting, a lens of magnification of, for example, 4 times (the range of the visual field is about $\varphi 5$) is used as the objective lens 62 ,
[0039] The light source 63 is a lamp to illuminate the objective lens 62 through the light collector 64 and the dish 7.
[0040] The light collector 64 is a unit to concentrate the light emitted from the light source 63 to send it to the objective lens 62 through the dish 7.
<Dish>
[0041] As shown in Figure 2A, the dish 7 is a dish on which the inspection object S is placed, and has a shape of, for example, a Petri dish (Schale) having a circular edge. The dish 7 is a dish-shaped member made of a transparent material such as glass, and has a horizontal inner bottom surface 7a. As shown in Figure 1, the dish 7 is placed on the table 61 of the microscope 6 so that the dish closes the opening 61a formed approximately at the central position of the table 61.

<Micro-manipulator>

[0042] The micro-manipulator 2 is a unit to carry out a micro operation using the micro-tool 4 on the inspection object S in the visual field of the microscope 6, and is mounted on the microscope 6 . The micro-manipulator 2 is provided with a base (not shown) of the micro-manipulator 2 , a column (not shown) standing on the base not shown, an arm 21 , an attachment part 22, the micro-tool 4 (positioning gauge 5), the movement mechanism 3 , an X-axis micro-motion mechanism 23, a Y-axis micro-motion mechanism 24, and a Z-axis micro-motion mechanism 25 . The base end of the arm 21 is rotatably attached to the column. The attachment part 22 is a part to attach the front end part of the arm 21 to the X-axis micro-motion mechanism 23. The movement mechanism 3 makes the positioning gauge 5 incline and linearly move (forward and backward). The X-axis micro-motion mechanism 23 moves the movement mechanism 3 in X-directions. The Y -axis micro-motion mechanism 24 moves the movement mechanism 3 in Y-directions. The Z-axis micromotion mechanism 25 moves the movement mechanism 3 in Z-directions.
[0043] The arm 21 is a member to support the micro-manipulator 2, and is attached to the column vertically provided to the base (not shown) or to a frame provided to the column.
[0044] The attachment part 22 is a part to mount the micro-manipulator 2 on the arm 21.

<Micro-tool>

[0045] The micro-tool 4 is a member to carry out a series of operations of separating, classifying, processing, selecting, treating, and the like on a minute particle such as an ovum, a cell, or a fungus in fields such as the medical field, the pharmaceutical field, the biotechnology industry field like selective breeding, the livestock industry field, the developmental engineering field, and the chemical industry field. The micro-tool 4 is, for example, a capillary, a pipette, a micro-pipette, a micro sampling tool, an electrode made of glass or the like, a micro needle, a fine tube, or the like. Hereinafter, the case of a capillary pipette (also called "micro-pipette") will be explained as an example of the micro-tool 4.
[0046] As shown in Figure 2A, the micro-tool 4 is mainly composed of a tool body 41 forming the capillary pipette, and a tool holder body 42 connected to a base side of the tool body 41 . Hereinafter, the case where the tool body 41 and the tool holder body 42 are separated from each other will be explained as an example of the micro-tool 4 . However, the micro-tool 4 may be one where the tool body 41 and the tool holder body 42 are integrated with each other.
[0047] The micro-tool 4 has a tool attachment part 42b at the position away from the front end of the micro-tool 4 toward a base side of the micro-tool by a prescribed distance L1. The prescribed distance L1, which is a distance away from the front end of the tool body 41 to the tool attachment part 42 b of the tool holder body 42 , is set to have the same length as a prescribed distance L2 previously set, which distance L2 is a distance from a gauge hole (mark) $5 b$ to the gauge attachment part 5c of the positioning gauge 5 shown in Figures 4A to 4D.
[0048] As shown in Figures 2A, 2B, the tool body 41 is made of, for example, a glass tube which has a base part 41a of a fine cylindrical tube having a diameter of about 1 mm and a front end part 41 b having a tapered shape getting narrower toward a front end side thereof from a base end of the base part 41a.
[0049] A shape adapted for the inspection object S is used as the shape of the front end part 41b. So there are various shapes according to the inspection object S. One to be used when microinsemination, in vitro fertilization, or the like is carried out will be explained as an example. The front end part 41 b is formed of a tapered portion 41c formed on a base end side thereof, a fine portion 41d formed from a front end side of the tapered portion 41c to a tip end of the tool body 41, and a bent portion 41e formed between the tapered portion 41c and the fine portion 41d.
[0050] The fine portion 41d is formed of an extremely fine tubular member which has, for example, a length of about 0.5 to about 2 mm (sometimes, about 6 mm) from the base end to the tip end thereof and an outer diameter of about $10 \mu \mathrm{~m}$. As the bent portion 41 e is bent at an angle of 30 degrees, the fine portion 41 d is disposed in a horizontal state along the inner bottom surface 7 a of the dish 7 .
[0051] The bent portion 41e is a bent site formed in order to make the fine portion 41d horizontal along the inner bottom surface 7 a of the dish 7 relative to the base part 41a and the tapered portion 41c disposed in an inclined state of, for example, the angle of 30 degrees.
[0052] The front end of the tool body 41 of the micro-tool 4 formed in this way is disposed to be positioned at a predetermined reference position O 1 which is on the optical axis 62 a of the objective lens 62 , as shown in Figure 1 . The reference position 01, later described in detail, is set to a position having a height H (refer to Figure 4C), by which height H the reference position is slightly away from the inner bottom surface 7 a of the dish 7 and is on the optical axis $62 a$, and the front end of the tool body 41 is at a position not in contact with the inner bottom surface 7 a of the dish 7 .
[0053] The tool holder body 42 is a fixing tool to hold the base end side of the base part 41a of the tool body 41 , and is also called as an injection holder. The tool holder body 42 has a cylindrical tube $42 a$, a clamp screw 42 c disposed on the front end portion of the cylindrical tube $42 a$, and the tool attachment part $42 b$ fixed at a position on the base end portion side of the cylindrical tube 42 a . The whole of the tool holder body 42 is made of stainless steel.
[0054] The cylindrical tube 42a is made of a stainless steel tube having a straight shape. An end portion of a tube not
shown is attached to the base end side of the cylindrical tube 42a. A pressuring device and the like are attached to the other end side of the tube.
[0055] The tool attachment part 42b is formed of a circular plate member of a thick plate which is fitted onto the outside surface of the cylindrical tube 42a, and is a part which is detachably held by the holding part 30 of the movement mechanism 3, and is capable of rotating in an angle of 360 degrees in a circular direction of an axis-rotational direction. When the tool attachment part 42 b is attached to the holding part 30 of the movement mechanism 3 in a state where the positioning to a prescribed position has been finished by using the positioning gauge 5 attached to the movement mechanism 3 to be described later, the tool attachment part 42 b is held in such a state that the micro-tool 4 is positioned in a prescribed state in a single operation.
[0056] As shown in Figure 2A, the clamp screw 42c is a part to detachably hold the micro-tool 4 inserted in the clamp screw 42c, and is constituted, for example, by a watertight collet chuck. For example, the watertight collet chuck is provided with a clamp screw 42c, a seal member provided inside the front end portion of the cylindrical tube 42a, in which member the tool body 41 is inserted, a tapered male thread part formed on the outer peripheral surface on the front end side of the cylindrical tube 42a, and a nut member to secure and hold the tool body 41 inserted in the cylindrical seal member by making the seal member narrower via the tapered male thread part by engaging the nut member with the tapered male thread part to rotate it. The seal member is made of a flexible rubber packing such as silicone resin, which is provided inside so as to come into contact with the micro-tool 4 and easy to be elastically deformed.

<Positioning Gauge>

[0057] As shown in Figure 3, the positioning gauge 5 is a jig for the initial setting to be used when the micro-tool 4 is attached to the movement mechanism 3 of the micro-manipulator device 1 (refer to Figure 1) in a state where the microtool 4 is properly positioned. When the positioning gauge 5 is used, after the positioning gauge 5 is held to the holding part 30 of the movement mechanism 3 in a state where the positioning gauge 5 is positioned, the positioning gauge 5 is detached, and then the micro-tool 4 is attached to the holding part 30 . Thereby, the micro-tool 4 can be positioned indirectly. That is, in the micro-manipulator device 1 , when the micro-tool 4 is positioned, the micro-tool 4 is positioned at the prescribed position by using the positioning gauge 5 without directly using the micro-tool 4.
[0058] In other words, after the positioning gauge 5 is attached to the holding part 30 of the movement mechanism 3 and positioned at the prescribed position and in the prescribed angle, the positioning gauge 5 is detached and the tool holder body 42 fixed with the micro-tool 4 is attached to the holding part 30 instead. Thereby, the micro-tool 4 can be positioned in a single operation without an operation of directly positioning the micro-tool 4 . The positioning gauge 5 is a jig configured to prevent the micro-tool 4 from being damaged because of touching the inner bottom surface 7 a of the dish 7 or the like, by indirectly carrying out a positioning operation of positioning the micro-tool 4.
[0059] The positioning gauge 5 has a gauge body 5 a, the gauge hole $5 b$, the gauge attachment part 5 c , and a gauge surface 5 d . The gauge body has a shape of a cylindrical tube. The gauge hole 5 b is formed at the front end portion of the positioning gauge 5. The gauge attachment part 5 c is provided at a position away from the gauge hole 5 b toward a base end side by a distance L2 which is the same distance as the prescribed distance L1 from the front end of the microtool 4 to the tool attachment part 42b. The gauge surface 5 d is formed at or on a bottom surface of the gauge hole 5 b . The positioning gauge 5 is held by the movement mechanism 3 upward in an oblique posture in which the positioning gauge 5 is positioned on and above the inner bottom surface 7 a of the dish 7 placed so as to close the opening 61a formed at a prescribed position of the table 61 of the microscope 6.
[0060] The gauge body 5 a is made of a stainless steel straight bar having a length of 180 mm and an outer diameter of 4 mm . The gauge body 5 a is held by the holding part 30 of the movement mechanism 3 in the oblique posture having an angle 01 (for example, 30 degrees) relative to the inner bottom surface 7 a of the dish 7 , in which posture the gauge body 5 a is inclined upward.
[0061] As shown in Figure 4C, the gauge hole 5 (mark) is a hole a center of which is positioned on the optical axis $62 a$ which is to be a positioning point at the time of positioning. The gauge hole $5 b$ is formed at a position 2 mm away from the front end of the gauge body 5 a toward the base end side. The gauge hole $5 b$ is positioned on the optical axis $62 a$ which passes through a central portion of the gauge surface 5 d . For example, the gauge hole 5 b is configured to have a small hole 5 e which is formed perpendicularly to the gauge surface 5 d at a height H of 0.5 mm (for example, about 0.1 mm to about 0.5 mm) from the gauge surface 5 d and which has an inner diameter of 1 mm ; a tapered upper side hole 5 f which is formed contiguously to and above the small hole 5 e and enlarged as it goes up; and a tapered lower side hole 5 g which is formed contiguously to and below the small hole $5 e$ and enlarged as it goes down. An inner peripheral edge of the small hole 5 e is a portion for positioning a focus and for positioning the front end of the fine portion 41d of the micro-tool 4 , and is positioned slightly higher than the gauge surface 5 d by the height H . Therefore, the fine portion 41d is prevented from being damaged due to abutting against the gauge surface 5 d . Since the inner peripheral edge of the small hole $5 e$ is formed into a wedge shape in a longitudinal sectional view, it is easy to bring into focus at a focal point. That is, the inner peripheral edge of the small hole 5 e has a shape by which it is easy to position the focus.
[0062] The reference position O 1 is a position for focusing the microscope 6 in the state where the positioning gauge 5 has been positioned, and is on the center line inside the inner peripheral edge of the small hole 5 e of the gauge hole $5 b$ (inner peripheral edge between the tapered upper side hole 5 f and the tapered lower side hole 5 g). For this reason, the reference position O 1 is set to be a position away from the inner bottom surface 7 a of the dish 7 by the height H of the small hole 5 e from the gauge surface 5 d .
[0063] As shown in Figure 3, the gauge attachment part 5c is a part to be detachably attached to the holding part 30, and is made of an approximately quadrangle thick plate having a thickness capable of inserting in the holding part 30. The gauge attachment part $5 c$ is fixed at the position away from the gauge hole $5 b$ which is positioned at the front end portion of the positioning gauge 5 toward the base end side by the prescribed distance $L 2$ (refer to Figure 4A).
[0064] As shown in Figure 4C, the gauge surface 5d is formed at the front end portion of the positioning gauge 5 to be a flat surface which has the prescribed angle $\theta 1$ set beforehand, and is a placing surface to be placed on the horizontal inner bottom surface 7 a of the dish 7 at the time of positioning. At the time of positioning, the gauge surface $5 d$ is positioned so that the gauge hole $5 b$ in the central portion of the gauge surface $5 d$ is positioned on the optical axis $62 a$ of the inner bottom surface 7 a of the dish 7 placed to close the opening 61a of the table 61 (refer to Figure 1). Note that, the prescribed angle $\theta 1$ is one of a plurality of angles set beforehand.
[0065] When the gauge surface 5d of the positioning gauge 5 formed in this way is placed on the inner bottom surface 7 a of the dish 7 without gap and the gauge hole 5 b is set onto the optical axis $62 a$, the position of the needle tip can be positioned in the X, Y, Z, and T-directions, and the angle $\theta 1$ is also correctly set automatically.
<Movement Mechanism>
[0066] As shown in Figure 1 or 3 , the movement mechanism 3 is a device capable of inclining and/or linearly moving (advancing or retreating) the micro-tool 4 and the positioning gauge 5 , and has a function to position the positioning gauge 5 in directions orthogonal to the Y-axis. The movement mechanism 3 has the holding part 30, a rotation mechanism 8 , and a linear movement mechanism 9. The holding part 30 detachably holds the tool attachment part 42 b of the microtool 4 or the gauge attachment part 5 c of the positioning gauge 5 . The rotation mechanism 8 is a mechanism for pivoting the holding part 30 (the micro-tool 4 or the positioning gauge 5) around the reference position 01 in upper-lower directions (directions shown by arrows a, b). The linear movement mechanism 9 is a mechanism for linearly moving the holding part 30 (the micro-tool 4 or the positioning gauge 5) in the T-directions (directions shown by arrows c and d) of the reference position 01 .

<Holding part>

[0067] As shown in Figure 3, the holding part 30 is disposed above the linear movement mechanism 9 of the movement mechanism 3 capable of pivoting around the reference position 01 in the gauge hole 5 b of the positioning gauge 5 detachably attached to the holding part 30. As shown in Figure 5, the holding part 30 has a supporting case body 31, a lock slider 32 , spring members 33 , a cover member 34 , fastening members 35 , and stoppers 36 . The supporting case body 31 is mounted on a linear slider 92 of the linear movement mechanism 9, which is to be described later, and hold the holding part 30 . The lock slider 32 is slidably mounted on the supporting case body 31 . The spring members 33 bias the lock slider 32 . The cover member 34 houses the lock slider 32 so as to support the lock slider 32 slidably. The fastening members 35 fix the cover member 34 onto the supporting case body 31 . The stoppers 36 regulate movements of the lock slider 32.
[0068] As shown in Figure 3, the supporting case body 31 is mounted on the linear slider 92 disposed on a linear movement mechanism body 91 of the linear movement mechanism 9 slidably toward the reference position 01 , and is a member to linearly move toward the reference position O 1 and move back together with the linear slider 92 . The supporting case body 31 has also a function to hold the holding part 30 and a cylinder tube 95.
[0069] The lock slider 32 is a slider mounted on the supporting case body 31 slidably in directions (directions shown by arrows e, f) orthogonal to an extending direction of the positioning gauge 5 . The lock slider 32 has a lock groove 32a, spring insertion holes 32 b , an unlocking operation part 32c, and guide grooves 32d. The lock groove 32a holds the gauge attachment part 5 c or the tool attachment part 42 b (refer to Figure 1). The spring insertion holes 32 b are holes in which the spring members 33 are inserted. The unlocking operation part 32c is a part to carry out an operation of releasing a state of holding the gauge attachment part 5 c or the tool attachment part 42 b in the lock grooves 32a. The guide grooves 32d are formed on the left and right side surfaces of the lock slider 32.
[0070] The lock groove 32a is a groove into which the gauge attachment part 5c and a part of the gauge body 5 a in the vicinity of the gauge attachment part 5 c in a front-rear direction, or the tool attachment part 42b (refer to Figure 1) and a part of the tool holder body 42 in the vicinity of the tool holder body 42 in a front-rear direction are inserted to be held thereby. The lock groove 32 a is formed in a cross shape in plan view, which shape is matched with the shape of the gauge attachment part 5 c and the part of the gauge body 5 a in the vicinity of the gauge attachment part 5 c in the
front-rear direction and the shape of the tool attachment part 42 b (refer to Figure 1) and the part of the tool holder body 42 in the vicinity of the tool holder body 42 in the front-rear direction. Since the lock slider 32 is biased toward the unlocking operation part 32c (in the direction of the arrow f) by the spring members 33, the gauge attachment part 5c and the part of the gauge body 5 a in the vicinity of the gauge attachment part 5 c in the front-rear direction attached in the lock groove 32a are held between one side wall surface of the lock groove 32a and a side wall surface of a notched groove 34 a facing the one side wall surface.
[0071] As shown in Figure 3, the spring insertion holes 32b are made of two cylindrical holes having bottoms, which holes are formed from an upper side surface of the lock slider 32 toward the unlocking operation part 32c.
[0072] The unlocking operation part 32c is formed at a side surface portion of the lock slider 32, which side surface is positioned on the opposite side of the spring insertion holes 32 b . When the unlocking operation part 32 c is pushed against forces of the spring members 33 , the lock slider 32 is moved in the direction of the arrow e, so that the one side wall surface of the lock groove 32a is apart from the gauge attachment part 5 c and the part of the gauge body $5 a$ in the vicinity of the gauge attachment part 5 c in the front-rear direction held between the one side wall surface of the lock groove 32a and the side wall surface of the notched groove 34a. Then, the lock slider 32 comes to be in a released state. In this way, since the gauge attachment part 5 c of the positioning gauge 5 which has been held is released when the unlocking operation part 32c is operated to be pushed, the positioning gauge 5 can be replaced with the micro-tool 4 and the tool attachment part 42 b can be held.
[0073] The guide grooves 32d are grooves for guiding the lock slider 32 movable in the directions (directions shown by the arrows e, f) orthogonal to the extending direction of the positioning gauge 5 or the micro-tool 4 and regulating the movement range of the lock slider 32 together with the stoppers 36 . The guide grooves 32 d are formed on the left and the right side surfaces of the lock slider 32 with the prescribed length in the directions of the arrows e, f.
[0074] The springs 33 are biasing members for making the holding part 30 be in the holding state by biasing the lock slider 32 in the direction (direction of the arrow f) to hold the gauge attachment part 5 c or the tool attachment part 42b. The springs 33 are made of two compressed coil springs to be inserted in respective holes 32 b of a pair of left and right spring insertion holes.
[0075] As shown in Figure 3, the cover member 34 is a member for covering and supporting the lock slider 32 slidably in the directions (directions of the arrows e, f) orthogonal to the extending direction of the positioning gauge 5 . The cover member 34 has the notched groove $34 a$, a casing portion 34 b, flange portions 34 c , a spring receiving portion 34 d , and stopper holes 34 e . The casing portion 34 b supports the lock slider 32 slidably in the linear directions. The flange portions 34 c are formed at front and rear ends of the casing portion 34 b . The spring receiving portion 34 d is formed on upper side surface of the casing portion 34 b . The stopper holes 34 e are formed on front and rear side surfaces of the casing portion 34b.
[0076] The notched groove 34a is a groove for exposing the lock groove 32a of the lock slider 32 disposed so as to be covered by the cover member 34. As shown in Figure 3, the notched groove 34a has also a function to hold the gauge attachment part 5 c and the vicinity of the gauge attachment part 5 c in the front-rear direction or the tool attachment part 42b (refer to Figure 1) and the vicinity of the tool holder body 42 in the front-rear direction, by a lower edge portion of the notched groove 34a formed in a T-shape and an upper side wall surface of the lock groove 32a formed in the cross shape.
[0077] As shown in Figure 5, the casing portion 34b is made of a metal plate member defining a hollow rectangular tube body together with the supporting case body 31 .
[0078] As shown in Figure 3, the flange portions 34c are rectangular plate-like portions formed on the left and the right sides of the cover member 34, and is formed so that the front and the rear end portions of the casing portion 34b are bended in L-shapes.
[0079] The spring receiving portion 34d is a portion for receiving an upper end portion of a spring 33, and is formed so that the upper side of the cover member 34 is bended in an L-shape.
[0080] As shown in Figure 5, the stopper holes 34e are through holes for attaching the stoppers 36 and are made of screw holes bored toward the guide grooves 32d from the front and the rear side surfaces of the casing portion 34b.
[0081] As shown in Figure 3, the fastening members 35 are disposed to fix upper and lower four portions of the front and the rear flange portions 34 c of the cover member 34 .
[0082] As shown in Figure 5, the stoppers 36 are members for regulating the movement range of the sliding lock slider 32 , and are made of male screws. Male screw portions of the stoppers 36 are screwed into the stopper holes 34 e on the both side surfaces. The stoppers 36 are disposed so that front end portions of the male screw portions of the stoppers 36 are positioned in the guide grooves 32d, so that the front end portions of the stoppers 36 abut against an inner wall surface of the guide grooves 32 d to regulate the movements of the lock slider 32 when the lock slider 32 finishes moving to a prescribed position.

<Linear Movement Mechanism>

[0083] As shown in Figure 5, the linear movement mechanism 9 is a device which advances or retreats the supporting case body 31 provided with the holding part 30 in the T-directions (T-axis directions), so that the micro-tool 4 or the positioning gauge 5 is retreated in the T-directions, or advanced (got back) to the originally positioned location or the like. The linear movement mechanism 9 has a first linear movement mechanism 9A, a second linear movement mechanism 9B, and a stopper mechanism 90 (refer to Figure 6). The first linear movement mechanism 9A can linearly move the supporting case body 31 by a short distance in the T-directions. The second linear movement mechanism 9B can linearly move the supporting case body 31 by a distance in the T-directions longer than the first linear movement mechanism 9A. The stopper mechanism 90 regulates the movements of the linear movement mechanism 9.
[0084] The first linear movement mechanism 9A is a device for moving the holding part 30, for example, by hydraulic pressure supplied through a tube 96 via a control valve of a linear movement mechanism operational device from a hydraulic cylinder not shown. The first linear movement mechanism 9A has a piston (not shown) connected to the holding part 30, a cylinder tube 95 housing the piston so as to be capable of linearly moving, the tube 96 for supplying hydraulic pressure into the cylinder tube 95 , the supporting case body 31 holding the cylinder tube 95 , and the stopper mechanism 90 (refer to Figure 6) for regulating the movements of the holding part 30.
[0085] The piston (not shown) is connected to the holding part 30 via a connecting member not shown, and is disposed so as to be capable of moving in the T-directions together with the holding part 30, for example, by about 10 mm , by supplying hydraulic pressure into the cylinder tube 95.
[0086] The cylinder tube 95 is a linear movement mechanism drive portion for linearly moving the holding part 30 by moving the piston according to the hydraulic pressure supplied into the cylinder tube 95.
[0087] The tube 96 is a hydraulic pressure supply tube through which the hydraulic pressure supplied via the control valve of the linear movement mechanism operational device from the hydraulic cylinder not shown is supplied into the cylinder tube 95.
[0088] As shown in Figure 6, the cylinder tube 95 is disposed inside the supporting case body 31, a lock lever 90d and a stopper slide supporter 90 c of the stopper mechanism 90 are disposed outside the supporting case body 31 , and the supporting case body 31 is disposed on the linear slider 92 of the second linear movement mechanism 9B. The first linear movement mechanism 9A is disposed so as to be capable of moving in the T-directions relative to the linear slider 92. The first linear movement mechanism 9A is moved together with the linear slider 92 of the second linear movement mechanism 9B when the linear slider 92 moves in the T-directions.
[0089] AS shown in Figure 5, the second linear movement mechanism 9B has the linear movement mechanism body 91 , the linear slider 92 , and a return spring 93 . The linear slider 92 is disposed slidably in the T -directions (including the direction toward the reference position O1) relative to the linear movement mechanism body 91 . The return spring 93 is for returning the linear slider 92 , which has been retreated by hand, toward the original position. The second linear movement mechanism 9B is configured to be capable of retreating toward the rear of the T-axis from the reference position O 1 at the front end of the positioning gauge 5 or the micro-tool 4 , for example, by 50 mm by pulling the linear slider 92 to move it in one of the T-directions, for example, by hand. When a hand is released in a state of releasing the lock lever 90d, the second linear movement mechanism 9B lets the micro-tool 4 or the holding part 30 automatically return to its original position through the spring force of the return spring 93.
[0090] The linear movement mechanism body 91 is a housing member for supporting the linear slider 92 and is formed as a box type member opening upward. The linear movement mechanism body 91 has an opening portion 91a, linear movement mechanism guide grooves 91 b , and a spring set groove 91 c . The linear slider 92 is put in the opening portion 91a so as to be slidable in the T-directions. The linear movement mechanism guide grooves 91 b are formed on the left and the right wall surfaces in the opening portion 91a. The spring set groove 91 c is a groove for disposing the return spring 93 on an inner wall surface of the opening portion 91 a. The linear movement mechanism body 91 is made of a casing body having a rectangle shape in plan view, and is extended toward the reference position O 1.
[0091] The lower portion of the linear slider 92 is disposed so as to be slidable in the T-directions inside the opening portion 91a of the linear movement mechanism body 91, and the upper end portion thereof is connected to the undersurface of the supporting case body 31 . Slider projections 92 a, which are engaged slidably with the linear movement mechanism guide grooves 91 b , are formed on the front and the rear sides on the left and the right side surfaces of the lower portion of the linear slider 92.
[0092] The return spring 93 is made of a tension coil spring for pulling the linear slider 92 to return it to its original position, and one end thereof is fixed to a rear side surface of the linear slider 92 and the other end is fixed to a rear inner wall surface of the opening portion 91a of the linear movement mechanism body 91.
[0093] As shown in Figure 6, the stopper mechanism 90 is a device for regulating movements of the holding part 30, the first linear movement mechanism 9A, and the second linear movement mechanism 9B in the T-directions. The stopper mechanism 90 has a guide groove 90b, an engagement groove 90 a, a stopper guide claw $90 f$, a stopper slide supporter 90 c, the lock lever 90 d , and a connecting member 90 g . The guide groove 90 b is formed on an outer wall
surface of the linear movement mechanism body 91. The engagement groove 90a is formed contiguously with the base end side of the guide groove 90 b in an L-shape. The stopper guide claw 90 f slides in the guide groove 90 b and the engagement groove 90a. The stopper guide claw 90f is disposed on the stopper slide supporter 90c. The lock lever 90d is pivoted at the upper portion of the stopper slide supporter 90 c so as to be movable upward and downward. The upper end of the connecting member 90 g is connected to the lock lever 90 d , and the lower end thereof is connected to the stopper guide claw 90 f.
[0094] The engagement groove 90a is a lock groove formed at the prescribed position on the outer wall surface of the linear movement mechanism body 91, and is formed to be directed downward from the base end of the guide groove 90b in the L-shape in side view.
[0095] The guide groove 90 b is made of a groove having a concave shape in cross section, which extends straight along the linear movement mechanism body 91 .
[0096] The stopper guide claw 90f is disposed slidably in the guide groove 90b and the engagement groove 90a. The stopper guide claw 90 f moves together with the stopper slide supporter 90 c in the T-directions while guiding the stopper slide supporter 90c, and moves downward together with the stopper slide supporter 90 c to enter the engagement groove 90a, which regulates movements of the first linear movement mechanism 9A and the second linear movement mechanism $9 B$ in the T-axis directions.
[0097] The lock lever 90d is a rotary operation lever to be directed in the T-axis directions (the direction toward the base end side and the direction toward the front end side) at the time of letting the micro-tool 4 or the positioning gauge 5 movable in the T-directions, and to be pressed downward in a state of standing upward for locking at the time of locking the micro-tool 4 or the positioning gauge 5 to regulate movements in the T -directions.
[0098] The stopper guide claw 90 is moved downward via the connecting member 90 g by pressing downward the lock lever 90d to be moved into the engagement groove 90a, so that a locking state is attained. And furthermore, the front end of the stopper guide claw $90 f$ is disengaged via the connecting member 90 g from the engagement groove 90 a to move to the guide groove 90b by pressing down the lock lever 90d, so that the first linear movement mechanism 9A and the second linear movement mechanism 9B can move linearly.
[0099] The stopper guide claw 90f is attached to the lower end portion of the stopper slide supporter 90c to project toward the guide groove 90b, the lock lever 90d is pivoted at the upper portion of the stopper slide supporter 90c, and the stopper slide supporter 90 c is integrated with the linear slider 92 .
[0100] The connecting member 90 g is disposed on a back surface side of the stopper slide supporter 90 c movably in the upper-lower directions, which back surface faces the linear movement mechanism body 91 , and moves in the upperlower directions according to operations of the lock lever 90d.

<Rotation Mechanism>

[0101] As shown in Figure 5, the rotation mechanism 8 has a rotation mechanism body 81, a plurality of rollers 82, an angle adjustment screw 83 , a knob 84 , a nut 85 , and a bearing 86 . The plurality of rollers 82 are disposed to be rotatably in a circle-like groove 81a of the rotation mechanism body 81 . The angle adjustment screw 83 is supported by support projections 81c (refer to Figure 3) formed at an upper and a lower rear ends of the rotation mechanism body 81. The knob 84 is formed at one end of the angle adjustment screw 83 . The nut 85 is engaged with the male thread of the angle adjustment screw 83 . The bearing 86 is engaged with a bearing housing groove 85 b on an upper surface of the nut 85 . [0102] As shown in Figures 1 and 3, the rotation mechanism 8 is configured so that the positioning gauge 5 or the micro-tool 4 can be inclined at an angle of, for example, 15 to 40 degrees around the reference position 01 by rotating the knob 84. Thus the movement mechanism 3 is configured so that the tips of the needle of the micro-tool 4 and the positioning gauge 5 can move around the same reference position O 1 when the rotation mechanism 8 is operated for rotation. Therefore, even when the micro-tool 4 or the positioning gauge 5 is rotated by the movement mechanism 3 , the reference position O 1 is not changed. So defocusing does not occur. Even if the focus position is shifted, the amount of the shift is only a little within the range of the visual field of the microscope.
[0103] As shown in Figure 3, the rotation mechanism body 81 has an arc groove 81a, roller engagement grooves 81b, the support projections 81c, an attachment shaft 81d, a nut support groove 81e, and a nut guide groove 81f. The arc groove 81a is formed to have an arc shape in side view. The roller engagement grooves 81 b are formed on the front and the rear inner wall surfaces of the arc groove 81a. The support projections 81 c are formed in a posture projecting rearward from the upper and the lower ends of the rotation mechanism body 81. The attachment shaft 81d is formed on the central portion of the undersurface of the rotation mechanism body 81 in a projecting posture. The nut support groove 81 e is formed to be extended in the upper-lower directions on the rear end surface of the rotation mechanism body 81. The nut guide groove 81 f is formed on the rear end side surface of the rotation mechanism body 81.
[0104] As shown in Figure 1, the arc groove 81a is a housing groove in which three rollers 82 are rotatably disposed, which rollers are rotatably supported on the undersurface of the linear movement mechanism body 91 . As shown in Figure 3, the arc groove 81a is formed to have an arc shape with a radius of R 1 around the reference position O 1 in a
side view. Therefore, the linear movement mechanism body 91 of the linear movement mechanism 9 , which body the rollers 82 are supported by, the holding part 30 of the movement mechanism 3 mounted on the linear slider 92 of the linear movement mechanism 9 , and the positioning gauge 5 or the micro-tool 4 (refer to Figure 1) fixed to the holding part 30 are rotated along the arc groove 81a around the reference position O1, and are configured to be capable of adjusting the inclination angle 01 without shifting the reference position 01 .
[0105] AS shown in Figure 1, the roller engagement groove 81b formed on the front inner wall surface of the arc groove 81a guides two rollers 82 disposed on the front side so as to move around the reference position O 1 while the two rollers 82 are in contact with the roller engagement groove 81 b formed on the front inner wall surface so as to be capable of rolling. The roller engagement groove 81 b formed on the rear inner wall surface of the arc groove 81 a guides one roller 82 disposed on the rear side so as to move around the reference position O 1 while the one roller 82 is in contact with the roller engagement groove 81b formed on the rear inner wall surface so as to be capable of rolling. As shown in Figure 5 , the roller engagement grooves 81 b are V-shaped grooves which are formed in the middle of the front inner wall surface and in the middle of the rear inner wall surface, of the arc groove 81a.
[0106] As shown in Figure 3, the support projections 81c are bearing portions having respective holes, which portions rotatably support respective ones of both end portions of the angle adjustment screw 83 like a screw rod.
[0107] As shown in Figure 5, the attachment shaft 81d is a shaft to connect the rotation mechanism body 81 to the micro-manipulator 2.
[0108] The nut support groove 81 e is a guide groove in which a slide projection 85 a formed onto the nut 85 is slidably inserted, and is formed on the rear end surface of the rotation mechanism body 81 to be extended straightly in the upperlower directions. The nut 85 is configured to move linearly in the upper-lower directions while being guided by the nut support groove 81 e without rotation thereof even when the angle adjustment screw 83 is rotated because the slide projection 85 a is inserted in the nut support groove 81 e .
[0109] The nut guide groove 81 f is formed at the upper edge of the nut support groove 81 e , and is the rear end surface of the rotation mechanism body 81 . The nut guide groove 81 f is disposed so that the front end surface of the bearing housing groove 85 b of the nut 85 slidably comes into contact with the nut guide groove 81 f when the linear movement mechanism body 91 moves around the reference position O1.
[0110] Each of the rollers 82 is a rotor having a shape of a bead of an abacus in side view, and is disposed so that a roller 82 is in contact with an inner wall surface of a roller engagement groove 81 b formed in the V-shape. Each of the rollers 82 is rotatably supported by a support shaft 82a fixed on the lower surface of the linear movement mechanism body 91 like a cantilever. As shown in Figure 1, the rollers 82 are consisted of, for example, three rollers. Two rollers 82 disposed on the front side are engaged with the front roller engagement groove 81 b , and the remained one roller 82 is engaged with the rear roller engagement groove 81b. Hereby, the linear movement mechanism body 91 can be connected to the rotation mechanism body 81 without backlash.
[0111] As shown in Figure 7, the angle adjustment screw 83 is a screw bar for moving the holding part 30, to which the micro-tool 4 or the positioning gauge 5 is fixed, through the linear slider 92 of the linear movement mechanism 9 in the upper-lower directions around the reference position O1 by moving the nut 85 connected to the linear movement mechanism body 91 via the bearing 86 in the upper-lower directions (directions shown by the arrows g, h) by rotating the knob 84. The angle adjustment screw 83 is rotatably supported by the support projections 81 c at the both end portions thereof, and the nut 85 engaged with the bearing 86 pivotally supported by the linear movement mechanism body 91 is screwed with the angle adjustment screw 83 in the middle portion thereof. Furthermore, the knob 84 is attached to the lower end of the angle adjustment screw 83.
[0112] The nut 85 has a female thread portion formed in the middle portion thereof, the slide projection 85a engaged with the nut support groove 81e slidably in the upper-lower directions, and the bearing housing groove 85b having a recessed shape engaged with the bearing 86 .
[0113] The bearing 86 has an inner ring 86a fixed on the lower surface of the linear movement mechanism body 91 by a bearing attachment screw 86 c, an outer ring 86 b engaged with the bearing housing groove 85 b, and steel balls interposed between the outer ring 86 b and the inner ring 86a.
[0114] The X-axis micro-motion mechanism 23 shown in Figure 1 is a linear driving device for moving the movement mechanism 3 in the X-directions (front-rear directions), and linearly moves the movement mechanism 3 in the X-directions, for example, by hydraulic pressure supplied from a hydraulic cylinder not shown via a control valve of an X-direction micro-motion operational device and a tube 23a.
[0115] The Y -axis micro-motion mechanism 24 is a linear driving device for moving the movement mechanism 3 in the Y -directions (left-right directions), and linearly moves the movement mechanism 3 in the Y -directions, for example, by hydraulic pressure supplied from the hydraulic cylinder not shown via a control valve of a Y-direction micro-motion operational device and a tube $24 a$.
[0116] The Z-axis micro-motion mechanism 25 is a linear driving device for moving the movement mechanism 3 in the Z-directions (upper-lower directions), and linearly moves the movement mechanism 3 in the Z-directions, for example, by hydraulic pressure supplied from the hydraulic cylinder not shown via a control valve of a Z-direction micro-motion

EP 3203295 B1

operational device and a tube 25 a.
<<Operations>>
[0117] Next, operations of the micro-manipulator device and the method for positioning the micro-tool according to the embodiment of the present invention will be explained in an operational process order with reference to Figures 1 to 7 , mainly to Figure 8.
<Positioning Gauge Positioning Process>
[0118] As shown in Figure 3, in the case where the micro-tool 4 is attached to the micro-manipulator device 1 in the prescribed state, a positioning process S 1 , in which the positioning gauge 5 is attached to the holding part 30 of the movement mechanism 3 at first, and then, the positioning gauge 5 is positioned, is carried out.
[0119] In the positioning process S 1 , at first, the gauge attachment part 5 c of the positioning gauge 5 is inserted into the holding part 30 to be fixed. The needle tip of the positioning gauge 5 is positioned in the Y -directions in the central portion on the inner bottom surface 7 a of the dish 7 by operating the Y -direction micro-motion operational device (not shown) of the Y -axis micro-motion mechanism 24 shown in Figure 1, and the movement in the Y -directions of the positioning gauge 5 is regulated by an exclusive adaptor (not shown) for exclusive use for the microscope 6 , so that the positioning gauge 5 is fixed. Hereby, the positioning gauge 5 is positioned at the prescribed needle tip position in the Y directions, so that positioning in the Y -directions becomes unnecessary.
[0120] Next, as shown in Figure 3, the positioning gauge 5 is moved in the X-directions and the Z-directions by operating the Z-direction micro-motion operational device (not shown) of the Z-axis micro-motion mechanism 25 and the X -direction micro-motion operational device (not shown) of the X -axis micro-motion mechanism 23, so that the gauge surface 5 d of the positioning gauge 5 is placed at the needle tip position on the inner bottom surface 7 a of the dish 7 and the gauge hole 5 b of the positioning gauge 5 is positioned on the optical axis 62 a of the objective lens 62 . Hereby, the positioning gauge 5 is positioned at the prescribed needle tip positions in the X-directions and the Z-directions.
[0121] Next, the inclination angle $\theta 1$ and a position in the T-directions (T-axis directions) of the positioning gauge 5 are set or positioned by the rotation mechanism 8 and the linear movement mechanism 9 of the movement mechanism 3. When the inclination angle $\theta 1$ of the positioning gauge 5 is set, the linear movement mechanism body 91 , the holding part 30 , and the positioning gauge 5 are rotated in the upper-lower directions (directions shown by arrows a,b) around the reference position O 1 by rotating the knob 84, so that the adjustment of the inclination angle 01 can be carried out.
[0122] When the position of the gauge hole 5 b of the positioning gauge 5 is deviated in the T-directions (directions shown by arrows c and d), at first, the light emitted from the light source 63 is projected to the gauge hole 5 b of the positioning gauge 5 . When the position of the positioning gauge 5 is adjusted so that the position of the gauge hole 5 b is on the optical axis 62a, it can be seen that the position is on the optical axis 62a because the inside of the gauge hole 5 b is lightened by the light from the light source 63. And then, by operating the first linear movement mechanism 9A of the linear movement mechanism 9, the positioning gauge 5 is slightly moved in the T-directions, so that the central axis of the gauge hole 5 b is aligned with the reference position O 1 on the optical axis 62a.
[0123] Accordingly, the positioning gauge 5 can be positioned at the prescribed needle tip positions in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and T -directions and the inclination angle $\theta 1$ can be also set to the prescribed angle.
<Positioning Gauge Focus Adjustment Process>
[0124] Next, the focus adjustment process S2 for the positioning gauge 5 , in which the microscope 6 is focused on the small hole 5 e of the gauge hole 5 b, is carried out.
<Micro-tool Attachment Process>
[0125] Subsequently, the locking state of the linear movement mechanism 9 is released by pressing down the lock lever 90 d while holding the lock lever 90d in a standing posture. Then, the linear slider 92 of the second linear movement mechanism 9B, the holding part 30, and the positioning gauge 5 are moved in the T-direction to be retreated against the spring force of the return spring 93 shown in Figure 5. Accordingly, the positions of the positioning gauge 5 in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-directions are not changed and a position only in the T-directions is changed. In this state, the linear movement mechanism 9 is locked in the retreated state by operating the lock lever 90d.
[0126] Next, the unlocking operation part 32c of the lock slider 32 shown in Figure 3 is pressed upward (direction of the arrow e). Then the lock groove 32a of the lock slider 32 holding the positioning gauge 5 while pressing the same, leaves the positioning gauge 5 , so the gauge attachment part 5 c of the positioning gauge 5 can be removed from the holding part 30 . After the positioning gauge 5 is removed from the holding part 30 in such a manner, the tool attachment
part 42b of the micro-tool 4 is pushed into the holding part 30 , so that the micro-tool 4 is fixed to the holding part 30 as shown in Figure 1.
[0127] In this state, the locking state of the linear movement mechanism 9 is released by operating the lock lever 90d, so that the linear slider 92 of the second linear movement mechanism 9B is pulled back because of the spring force of the return spring 93 shown in Figure 5. Hereby, the holding part 30 and the micro-tool 4 are moved in the T-direction, so that the micro-tool 4 is automatically returned to the position to which positioning of the positioning gauge 5 has been done.
[0128] In this case, the micro-tool 4 has the tool attachment part 42b which can be similarly detachably attached to the holding part 30 at the same position (position of the distance L1 or L2 away from the reference position O1) as the gauge attachment part 5 c of the positioning gauge 5 which has been positioned in the positioning process S 1 . Therefore, after the positioning gauge 5 , which has been positioned, is moved in the T-direction and is replaced with the micro-tool 4 to be attached, the micro-tool 4 can be set with precision in a single operation to the prescribed positions in the X, Y, Z, T-directions and the prescribed inclination angle $\theta 1$ only by automatically returning the micro-tool to the original position to which the positioning has been carried out.
[0129] With the above, all processes are finished. According to the method for positioning the micro-tool of the present invention, the above indirect positioning of the micro-tool 4 makes a direct positioning operation of the micro-tool 4 unnecessary. Therefore, the positioning operation, which has been a complicated operation requiring skill, becomes simple, and can be carried out precisely and in a short time. After the positioning gauge 5 , which has been positioned, is retreated by the movement mechanism 3 to a position at which the replacement operation can be easily carried out, the micro-tool 4 is attached only by pushing into the holding part 30 , and is automatically returned to the original position to which the positioning gauge 5 has been positioned, so that the micro-tool 4 is attached in the state where the positioning is finished. Accordingly, the prior problem that the needle tip comes into contact with the dish 7 or the like to be damaged during the positioning operation is resolved, so that the cost due to the damage of the micro-tool 4 can be canceled.
[0130] That is, in the present invention, there is no necessity that the micro-tool 4 is moved in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$-directions to be positioned, so that even a person having no skill can repeatedly position the micro-tool 4 precisely, easily and rapidly. And furthermore, operational efficiency and operational ability of the positioning operation can be improved.

<First Modification>

[0131] Note that, the present invention is not limited to the aforesaid embodiment, various modifications can be done within the range of the technical concept, and the present invention also includes such modifications. Note that, explanations of the constitutions already explained are omitted and the same symbols are referred to them.
[0132] Figures 9A to 9C are schematic side views showing a first modification of the micro-tool of the micro-manipulator device according to the embodiment of the present invention.
[0133] In the previous embodiment, the micro-pipette, which has the angle 02 of 30 degrees of the bent portion 41e of the base end of the fine portion 41d, has been explained as an example of the micro-tool 4 (refer to Figure 2B), but as shown in Figures 9A to 9C, micro-tools 4A, 4B, 4C may be micro-tools, fine portions 4Ad, 4Bd, 4Cd of front end portions $4 \mathrm{Ab}, 4 \mathrm{Bb}, 4 \mathrm{Cb}$ of which are bent at appropriate angles $\theta 21, \theta 22, \theta 23$, respectively according to states of the inspection object S.
[0134] When the front end portions $4 \mathrm{Ab}, 4 \mathrm{Bb}, 4 \mathrm{Cb}$ including the fine portions $4 \mathrm{Ad}, 4 \mathrm{Bd}, 4 \mathrm{Cd}$ and tapered portions $4 \mathrm{Ac}, 4 \mathrm{Bc}, 4 \mathrm{Cc}$ are necessary to be held in a horizontal state in the dish 7 at the time of operation, it is easy for front end regions to be horizontally held if the angles $\theta 21$ to $\theta 23$ are obtuse angles. That is, even if base portions $4 \mathrm{Aa}, 4 \mathrm{Ba}, 4 \mathrm{Ca}$ of the micro-tools $4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}$ are inclined, the front sides of the fine portions $4 \mathrm{Ad}, 4 \mathrm{Bd}, 4 \mathrm{Cd}$ come to be in a horizontal state because of the fine portions 4Ad, 4Bd, 4Cd bent at angles of about 120 to 160 degrees ($\theta 21$ to $\theta 23$), so that the front sides of the fine portions $4 \mathrm{Ad}, 4 \mathrm{Bd}, 4 \mathrm{Cd}$ can be disposed along the inner bottom surface 7 a of the dish 7 . Therefore, positioning operations of the front end portions $4 \mathrm{Ab}, 4 \mathrm{Bb}, 4 \mathrm{Cb}$ and an injection operation are easily carried out.
[0135] As shown in Figure 9A, the length L3 of the base portion 4Aa, the length L4 of an inclined portion of the fine portion 4Ad, which inclined portion is straightly extended from the base portion 4Aa, and the length L5 of a horizontal portion of the fine portion 4Ad may be appropriately changed.
[0136] Figure 10 is a schematic side view showing a first modification of the positioning gauge of the micro-manipulator device according to the embodiment of the present invention, and showing a state when the micro-tool is attached in place of the positioning gauge which has been positioned.
[0137] As shown in Figure 10, the positioning gauge 5A has a gauge attachment part 5Ac matching a tool attachment part 42Ab of the micro-tool 4 A , a gauge surface 5 Ad matching the bent fine portion 4Ad of the micro-tool 4 A , and a gauge hole 5 Ab located at the position matching the front end portion 4Ab of the micro-tool 4 A . The positioning gauge $5 A$ may be a gauge, the front end portion of which is bent to match the shape of the needle front portion of the microtool 4 , which needle front portion is bent.
[0138] In such a manner, in the case where the positioning gauge 5A having the gauge attachment part 5Ac and the

EP 3203295 B1

front end portion shape matching the shape of the micro-tool 4 A is used, the positions in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$-directions and the inclination angle 01 of the micro-tool 4 A can be precisely set by attaching the micro-tool 4 A to the holding part 30 in place of the positioning gauge 5A which has been positioned.

<Second Modification>

[0139] Figure 11 is a schematic enlarged partial sectional view showing a second modification of the positioning gauge of the micro-manipulator device according to the embodiment of the present invention.
[0140] As shown in Figure 11, the positioning gauge 5D may be configured to have a front end portion 5Dh which is detachably attached to a gauge body 5Da by using a screw portion 5Di or the like. Furthermore, an exchangeable plate 51 , which has a second gauge hole 51 b matching a gauge hole 5 Db and a gauge surface 51 d , may be attached on the lower surface of the front end portion 5Dh of the positioning gauge 5D by using screws 52 or the like.
[0141] In such a constitution, the positioning gauge 5D and the plate 51 can constitute a positioning gauge having a desired length and shape by being appropriately replacing with one or ones having a different length and/or a different shape.
[0142] Furthermore, in the case where the front end portion 5Dh or the gauge surface 51d of the positioning gauge 5 D is damaged, only the plate 51 or the front end portion 5Dh needs to be replaced.
[0143] In the case where the length L5 of the horizontal portion of the fine portion 4Ad shown in Figure 9A is about 0.5 to 2 mm , it can be covered even by using the positioning gauge 5A shown in Figure 10. However, the case where the length K5 is over that value cannot be coped with, even by using that shown in Figure 10. In such a case, the length L5 of the horizontal portion of the fine portion 4Ad can be coped with by replacing that shown in Figure 10 with the positioning gauge 5D, the plate 51, or the like shown in Figure 11. Furthermore, the replaceable plate 51 may be provided with a mark of a cross line or other shapes.

<Third Modification>

[0144] Figure 12 is a schematic perspective view showing a third modification of the micro-manipulator device according to the embodiment of the present invention.
[0145] As shown in Figure 12, regarding the micro-tool 4 in which the tool body 41 is attached to the front end of the tool holder body 42 , when the distance L1 from the front end of the tool body 41 to the tool attachment part 42 b is set to be a prescribed length, a length adjusting gauge 43 having a scale part 43 a like a ruler may be used. The length adjusting gauge 43 is a case body which has support grooves $43 \mathrm{~b}, 43 \mathrm{c}, 43 \mathrm{~d}$ for supporting the micro-tool 4 and the scale part 43a calibrated by, for example, a unit of mm . The scale part 43a is provided on an upper surface of the length adjusting gauge 43 , which surface includes edge lines of the opened support groove 43 b to support the tool body 41 . The support groove 43 c is a part to support the tool holder body 42. The support groove 43 d is a part to support the tool attachment part 42b.
[0146] Regarding the micro-tool 4 and the length adjusting gauge 43, the tool attachment part 42b is engaged with the support groove 43d to place the micro-tool 4 on the length adjusting gauge 43, and the front end of the tool body 41 is set to the "zero" of the scale part 43a, so that the distance L1 from the front end of the tool body 41 to the tool attachment part 42 b can be set to the prescribed length.

<Fourth Modification>

[0147] Figure 13 is a schematic perspective view showing a micro-tool of a fourth modification of the micro-manipulator device according to the embodiment of the present invention. Figure 14A is an enlarged schematic perspective view showing a length adjusting gauge of the fourth modification of the present invention when the gauge is installed in the micro-tool. Figure 14B is an enlarged schematic perspective view showing the length adjusting gauge of the fourth modification of the present invention when the gauge is housed in the micro-tool.
[0148] As shown in Figures 13, 14A, 14B, the length adjusting gauge 44 may be a gauge attached to the micro-tool 4. [0149] In this case, the length adjusting gauge 44 has a tube-like part 45 which is fitted on the outer surface of the front end portion of the cylindrical tube 42a, and a length fitting member 46 the base end portion of which is supported in support holes 45 b formed at the middle portions of left and right support grooves 45 a of the tube-like part 45 so as to be capable of turning in the front-rear directions.
[0150] The tube-like part 45 is fitted on the clamp screw 42c which is positioned at the front end portion of the cylindrical tube 42a. The length fitting member 46 is made of a wire member bent in a shape of almost U (almost recessed shape) in plan view of the whole. The length fitting member 46 has a pair of left and right shaft portions 46 a formed at the base end portion, prescribed length portions 46 b which are parallel to each other along the T -axis and are extended toward the front side from the shaft portions $46 a$, bent portions 46 c bent downward from the front ends of the prescribed length
portions 46b, and a recessed portion 46d having a recessed shape recessed downward from the bent portions 46c.
[0151] The prescribed length portions 46 b are formed so that a length L 6 from the shaft portions 46 a to the bent portions 46 c is a prescribed length. The micro-tool 4 is configured so that, when the prescribed length portions 46 b are directed toward the front side (in a state where they are pushed down in a direction shown by an arrow i) as shown in Figures $13,14 \mathrm{~A}$, the length from the front end of the tool body 41 to the tool attachment part 42 b is equal to the distance L1 by making the front end of the fine portion 41d coincide with the position between the left and right bent portions 46c. When not used, the prescribed length portions 46 b are turned to the base end side (in a direction shown by an arrow j) to be a housed state as shown in Figure 14B.

<Fifth Modification>

[0152] Figure 15A is an enlarged schematic perspective view showing a length adjusting gauge of a fifth modification of the micro-manipulator device according to the embodiment of the present invention when the gauge is installed in the micro-tool. Figure 15B is an enlarged schematic perspective view showing the length adjusting gauge of the fifth modification of the micro-manipulator device according to the embodiment of the present invention when the gauge is housed in the micro-tool.
[0153] The foresaid length adjusting gauge 44 of the fourth embodiment may be formed so that a length fitting member 49 is slidable in the T-directions (directions shown by arrows k, m) relative to a tube-like part 48 like a length adjusting gauge 47 shown in Figures 15A, 15B.
[0154] In this case, the length fitting member 49 is formed in almost the same shape as the length fitting member 46 of the fourth modification. That is, engagement portions 49a provided at the rear end of the length fitting member 49 and a recessed portion 49d (bent portions 49c) at the front end thereof abut against respective opening ends of through holes 48a formed in the tube-like part 48 so as to point in the T-directions, so that the length fitting member 49 is regulated regarding a length, in the range of which the length fitting member 49 can move linearly. As shown in Figure 15A, the length adjusting gauge 47 is configured so that a length from the front end of the micro-tool 4 to the tool attachment part $42 b$ is equal to the distance L1 when the length fitting member 49 is pulled toward the front side. And when the microtool 4 is not used, the length fitting member 49 is pushed toward the base end side (in a direction shown by an arrow m) to be housed as shown in Figure 15B.

<<Other Modifications>>

[0155] In the foresaid embodiment, the case, where the gauge hole 5 b is formed in the positioning gauge 5 and the central axis of the gauge hole is positioned to be aligned with the optical axis 62a, has been explained. However, the gauge hole 5 b may be anything to serve as a mark when the positioning is carried out, for example, it may be a mark such as a point or a scale.
[0156] Furthermore, the gauge hole 5b may be any hole to serve as a positioning point when the positioning is carried out, and a shape of the gauge hole 5 b may be appropriately modified. For example, it may be a straight hole, a hole which has an upper enlarged hole $5 f$ enlarged toward the upper side and a lower hole of a straight hole contiguous with the upper enlarged hole, or a hole having a stepwise shape.
[0157] And furthermore, in the foresaid embodiment, the case where the micro-tool 4 of a capillary pipette is positioned has been explained as an example, but the present invention can be appropriately applied to even a case where a bar member or a tube member in any fields is positioned.

DESCRIPTION OF THE SYMBOLS

[0158]

1 Micro-manipulator device
2 Micro-manipulator
3 Movement mechanism
3a
4, 4A, 4B, 4C
Holding part
5,5A,5B,5C,5D Positioning gauge
$5 \mathrm{~b}, 5 \mathrm{Ab}, 5 \mathrm{Bb}, 5 \mathrm{Db} \quad$ Gauge hole (Mark)
5c, 5Ac
5d, 5Ad, 51d
6
7
Gauge attachment part
Gauge surface
Microscope
Dish

7a	Inner bottom surface
8	Rotation mechanism
9	Linear movement mechanism
9A	First linear movement mechanism (Linear movement mechanism)
9B	Second linear movement mechanism (Linear movement mechanism)
30	Holding part
42b	Tool attachment part
61	Table
$61 a$	Opening
62	Objective lens
$62 a$	Optical axis
L1, L2	Prescribed distance
S	Inspection object
S1	Positioning gauge positioning process
S2	Positioning gauge focus adjustment process
S3	Micro-tool attachment process

Claims

1. A method for positioning a micro-tool (4) of a micro-manipulator device (1) by using a positioning gauge (5) of the micro-manipulator device (1) carrying out a micro operation on an inspection object by the micro-manipulator device (1) which has a holding part (30) capable of detachably holding either the micro-tool (4) or the positioning gauge (5), the micro-tool (4) having a tool attachment part (42b) provided at a position away from a front end of the microtool (4) toward a base end of the micro-tool (4) by a prescribed distance (L1) set beforehand, the positioning gauge (5) having a gauge attachment part (5c) provided at a position away from a mark (5b) provided at a front end portion of the positioning gauge (5) toward a base end of the positioning gauge (5) by a distance (L2) which has the same length as the prescribed distance (L1),
wherein the method comprises
a positioning gauge positioning process (S1) of placing a gauge surface (5d) of the front end portion of the positioning gauge (5) on a dish-shaped member (7) made of a transparent material placed at a prescribed position on a table of a microscope (6) while the gauge attachment part (5c) of the positioning gauge (5) is fixed to the holding part (30), and aligning the mark (5b) with an optical axis (62a) of an object lens (62) of the microscope (6); and a micro-tool attachment process (S3) of fixing the tool attachment part (42b) of the micro-tool (4) to the holding part (30) after removing the gauge attachment part (5c) of the positioning gauge (5) from the holding part (30).
2. The method for positioning a micro-tool (4) according to claim 1, further comprising a positioning gauge focus adjustment process (S2) of matching a focus of the microscope (6) with the mark (5b) in a state where the positioning gauge (5) has been positioned in the positioning gauge positioning process (S1).
3. The method for positioning a micro-tool (4) according to claim 1, wherein the positioning gauge (5) is held by the holding part (30) in an upward oblique posture positioned on and above an inner bottom surface of the dish-shaped member (7),
wherein the gauge surface (5d) is formed to be flat at a front end portion of the positioning gauge (5), and is placed on the inner bottom surface of the dish-shaped member (7) in the positioning gauge positioning process (S1), and wherein the mark (5 b) is formed to be orthogonal to the gauge surface (5 d), and is positioned on the optical axis (62a) in the positioning gauge positioning process (S1).
4. The method for positioning a micro-tool (4) according to claim 1 ,
wherein the holding part (30) is provided in a movement mechanism (3) for moving the positioning gauge (5) detachably attached to the holding part (30),
wherein the movement mechanism (3) comprises a rotation mechanism (8) for pivoting the holding part (30) holding the positioning gauge (5) around the mark (5b), and a linear movement mechanism (9) for linearly moving the holding part (30) in an axial direction (c, d) of the positioning gauge (5), to position the positioning gauge (5), and wherein the micro-tool (4) is attached to the holding part (30) after the holding part (30) holding the positioning gauge (5), positioning of which has been finished, releases the positioning gauge (5) in a state of fixing a position of the holding part (30) on a horizontal axis (Y) orthogonal to the axial direction (c, d).
5. The method for positioning a micro-tool (4) according to claim 4, wherein the linear movement mechanism (9) advances the holding part (30) to return to a position where the positioning gauge (5) has been positioned in the positioning gauge positioning process (S1) after retreating the holding part (30) holding the positioning gauge (5), positioning of which has been finished in the positioning gauge positioning process (S1).
6. A micro-manipulator device (1) comprising:

Abstract

a micro-tool (4) having a tool attachment part (42b) provided at a position away from a front end of the microtool (4) toward a base end of the micro-tool (4) by a prescribed distance (L1) set beforehand, and a micro-manipulator (2) for carrying out a micro operation on an inspection object in a visual field of a microscope (6) with use of the micro-tool (4), characterized in that the micro-manipulator device (1) comprises a positioning gauge (5) having a gauge attachment part (5c) provided at a position away from a mark (5b) provided at a front end portion of the positioning gauge (5) toward a base end of the positioning gauge (5) by a distance (L2) which has the same length as the prescribed distance (L1); a holding part (30) capable of detachably holding the tool attachment part (42b) of the micro-tool (4) and detachably holding the gauge attachment part (5c) of the positioning gauge (5) instead of the tool attachment part (42b) of the micro-tool (4); and a movement mechanism (3) for positioning the positioning gauge (5) held by the holding part (30) in an axial direction (c, d) of the positioning gauge (5).

7. The micro-manipulator device (1) according to claim 6 , wherein the movement mechanism (3) comprises:
a rotation mechanism (8) for pivoting the holding part (30) holding the positioning gauge (5) around the mark (5b); and
a linear movement mechanism (9) for linearly moving the holding part (30) holding the positioning gauge (5) in the axial direction (c, d) of the positioning gauge (5).

Patentansprüche

1. Verfahren zum Positionieren eines Mikrowerkzeugs (4) einer Mikromanipulatorvorrichtung (1) unter Verwendung einer Positionierungslehre (5) der Mikromanipulatorvorrichtung (1), wobei eine Mikrooperation an einem Untersuchungsobjekt durch die Mikromanipulatorvorrichtung (1) ausgeführt wird, die ein Halteteil (30) aufweist, das dazu in der Lage ist, lösbar entweder das Mikrowerkzeug (4) oder die Positionierungslehre (5) zu halten, wobei das Mikrowerkzeug (4) ein Werkzeugbefestigungsteil (42b) aufweist, das in einer Position entfernt von einem vorderen Ende des Mikrowerkzeugs (4) zu einem Basisende des Mikrowerkzeugs (4) durch einen zuvor festgelegten vorgeschriebenen Abstand (L1) vorgesehen ist, wobei die Positionierungslehre (5) ein Lehrenbefestigungsteil (5c) aufweist, das in einer Position entfernt von einer an einem vorderen Endteil der Positionierungslehre (5) vorgesehenen Markierung (5b) zu einem Basisende der Positionierungslehre (5) durch einen Abstand (L2) vorgesehen ist, der die gleiche Länge aufweist wie der vorgeschriebene Abstand (L1),
wobei das Verfahren zudem umfasst:
einen Positionierungslehren-Positionierungsprozess (S1) zum Platzieren einer Lehrenoberfläche (5d) des vorderen Endteils der Positionierungslehre (5) auf einem schalenförmigen Element (7), das aus einem transparenten Material hergestellt wird, das in einer vorgeschriebenen Position auf einem Tisch eines Mikroskops (6) platziert ist, während das Lehrenbefestigungsteil (5c) der Positionierungslehre (5) an dem Halteteil (30) fixiert ist, und Ausrichten der Markierung (5b) mit einer optischen Achse (62a) einer Objektlinse (62) des Mikroskops (6); und
einen Mikrowerkzeug-Befestigungsprozess (S3) zum Fixieren des Werkzeugbefestigungsteils (42b) des Mikrowerkzeugs (4) an dem Halteteil (30), nachdem das Lehrenbefestigungsteil (5c) der Positionierungslehre (5) von dem Halteteil (30) entfernt wurde.
2. Verfahren zum Positionieren eines Mikrowerkzeugs (4) nach Anspruch 1, ferner umfassend einen Positionierungs-lehrenfokus-Einstellungsprozess (S2) zum Anpassen eines Fokus des Mikroskops (6) an die Markierung (5b) in einem Zustand, in dem die Positionierungslehre (5) in dem Positionierungslehren-Positionierungsprozess (S1) positioniert wurde.

EP 3203295 B1

3. Verfahren zum Positionieren eines Mikrowerkzeugs (4) nach Anspruch 1, wobei die Positionierungslehre (5) von dem Halteteil (30) in einer nach oben gerichteten schrägen Stellung gehalten wird, die an und oberhalb einer inneren unteren Fläche des schalenförmigen Elements (7) positioniert ist, wobei die Lehrenoberfläche (5d) so ausgebildet ist, dass sie an einem vorderen Endteil der Positionierungslehre
(5) flach ist und in dem Positionierungslehren-Positionierungsprozess (S1) an der inneren unteren Fläche des schalenförmigen Elements (7) platziert ist, und
wobei die Markierung (5b) so ausgebildet ist, dass sie zu der Lehrenoberfläche (5d) orthogonal ist und in dem Positionierungslehren-Positionierungsprozess (S1) an der optischen Achse (62a) positioniert ist.
4. Verfahren zum Positionieren eines Mikrowerkzeugs (4) nach Anspruch 1, wobei das Halteteil (30) in einem Bewegungsmechanismus (3) zum Bewegen der Positionierungslehre (5) vorgesehen ist, die lösbar an dem Halteteil (30) befestigt ist,
wobei der Bewegungsmechanismus (3) einen Drehmechanismus (8) zum Schwenken des die Positionierungslehre (5) haltenden Halteteils (30) um die Markierung (5b) und einen linearen Bewegungsmechanismus (9) zum linearen Bewegen des Halteteils (30) in einer axialen Richtung (c, d) der Positionierungslehre (5) umfasst, um die Positionierungslehre (5) zu positionieren, und
wobei das Mikrowerkzeug (4) an dem Halteteil (30) befestigt wird, nachdem das Halteteil (30), das die Positionierungslehre (5) hält, deren Positionierung abgeschlossen ist, die Positionierungslehre (5) in einem Zustand des Fixierens einer Position des Halteteils (30) an einer horizontalen Achse (Y) orthogonal zu der axialen Richtung (c, d) freigibt.
5. Verfahren zum Positionieren eines Mikrowerkzeugs (4) nach Anspruch 4, wobei der lineare Bewegungsmechanismus (9) das Halteteil (30) vorschiebt, damit es in eine Position zurückkehrt, in der die Positionierungslehre (5) in dem Positionierungslehren-Positionierungsprozess (S1) positioniert wurde, nachdem das Halteteil (30) zurückgezogen wurde, das die Positionierungslehre (5) hält, deren Positionierung in dem Positionierungslehren-Positionierungsprozess (S1) abgeschlossen wurde.
6. Mikromanipulatorvorrichtung (1), umfassend:
ein Mikrowerkzeug (4), das ein Werkzeugbefestigungsteil (42b) aufweist, das in einer Position entfernt von einem vorderen Ende des Mikrowerkzeugs (4) in Richtung eines Basisendes des Mikrowerkzeugs (4) durch einen zuvor festgelegten vorgeschriebenen Abstand (L1) vorgesehen ist, und
einen Mikromanipulator (2) zum Ausführen einer Mikrooperation an einem Untersuchungsobjekt in einem Sichtfeld eines Mikroskops (6) unter Verwendung des Mikrowerkzeugs (4),
dadurch gekennzeichnet, dass die Mikromanipulatorvorrichtung (1) zudem umfasst:
eine Positionierungslehre (5), die ein Lehrenbefestigungsteil (5c) aufweist, das in einer Position entfernt von einer an einem vorderen Endteil der Positionierungslehre (5) vorgesehenen Markierung (5b) in Richtung eines Basisendes der Positionierungslehre (5) durch einen Abstand (L2) vorgesehen ist, der die gleiche Länge aufweist wie der vorgeschriebene Abstand (L1);
ein Halteteil (30), das dazu in der Lage ist, lösbar das Werkzeugbefestigungsteil (42b) des Mikrowerkzeugs (4) zu halten und lösbar das Lehrenbefestigungsteil (5c) der Positionierungslehre (5) anstelle des Werkzeugbefestigungsteils (42b) des Mikrowerkzeugs (4) zu halten; und
einen Bewegungsmechanismus (3) zum Positionieren der Positionierungslehre (5), die von dem Halteteil (30) gehalten wird, in einer axialen Richtung (c, d) der Positionierungslehre (5).
7. Mikromanipulatorvorrichtung (1) nach Anspruch 6, wobei der Bewegungsmechanismus (3) zudem umfasst:
einen Drehmechanismus (8) zum Schwenken des Halteteils (30), das die Positionierungslehre (5) hält, um die Markierung (5b); und
einen linearen Bewegungsmechanismus (9) zum linearen Bewegen des Halteteils (30), das die Positionierungslehre (5) hält, in der axialen Richtung (c, d) der Positionierungslehre (5).

Revendications

1. Procédé de positionnement d'un micro-outil (4) d'un dispositif de micromanipulateur (1) en utilisant un gabarit de positionnement (5) du dispositif de micromanipulateur (1) réalisant une micro-opération sur un objet d'inspection
par le dispositif de micromanipulateur (1) qui comporte une partie de maintien (30) capable de maintenir de façon détachable soit le micro-outil (4), soit le gabarit de positionnement (5), le micro-outil (4) ayant une partie d'attache d'outil (42b) prévue à une position éloignée d'une extrémité avant du micro-outil (4) vers une extrémité de base du micro-outil (4) d'une distance prescrite (L1) établie au préalable, le gabarit de positionnement (5) ayant une partie d'attache de gabarit (5c) prévue à une position éloignée d'un repère (5b) prévu au niveau d'une portion d'extrémité avant du gabarit de positionnement (5) vers une extrémité de base du gabarit de positionnement (5) d'une distance (L2) qui a la même longueur que la distance prescrite (L1),
dans lequel le procédé comprend
un processus de positionnement de gabarit de positionnement (S1) consistant à placer une surface de gabarit (5d) de la portion d'extrémité avant du gabarit de positionnement (5) sur un organe en forme de disque (7) constitué d'un matériau transparent placé à une position prescrite sur une table d'un microscope (6) tandis que la partie d'attache de gabarit (5c) du gabarit de positionnement (5) est fixée à la partie de maintien (30), et à aligner le repère (5b) avec un axe optique (62a) d'un objectif (62) du microscope (6) ; et
un processus d'attache de micro-outil (S3) consistant à fixer la partie d'attache d'outil (42b) du micro-outil (4) à la partie de maintien (30) après enlèvement de la partie d'attache de gabarit (5c) du gabarit de positionnement (5) depuis la partie de maintien (30).
2. Procédé de positionnement d'un micro-outil (4) selon la revendication 1, comprenant en outre un processus d'ajustement de foyer de gabarit de positionnement (S2) consistant à faire concorder un foyer du microscope (6) avec le repère $(5 b)$ dans un état où le gabarit de positionnement (5) a été positionné dans le processus de positionnement de gabarit de positionnement (S1).
3. Procédé de positionnement d'un micro-outil (4) selon la revendication 1 ,
dans lequel le gabarit de positionnement (5) est maintenu par la partie de maintien (30) dans une posture oblique vers le haut positionnée sur et au-dessus d'une surface de dessous interne de l'organe en forme de disque (7), dans lequel la surface de gabarit (5d) est formée pour être plate au niveau d'une portion d'extrémité avant du gabarit de positionnement (5), et est placée sur la surface de dessous interne de l'organe en forme de disque (7) dans le processus de positionnement de gabarit de positionnement (S1), et
dans lequel le repère (5b) est formé pour être orthogonal à la surface de gabarit (5d), et est positionné sur l'axe optique (62a) dans le processus de positionnement de gabarit de positionnement (S1).
4. Procédé de positionnement d'un micro-outil (4) selon la revendication 1 ,
dans lequel la partie de maintien (30) est prévue dans un mécanisme de déplacement (3) pour déplacer le gabarit de positionnement (5) attaché de façon détachable à la partie de maintien (30),
dans lequel le mécanisme de déplacement (3) comprend un mécanisme de rotation (8) pour faire pivoter la partie de maintien (30) maintenant le gabarit de positionnement (5) autour du repère (5b), et un mécanisme de déplacement linéaire (9) pour déplacer linéairement la partie de maintien (30) dans une direction axiale (c, d) du gabarit de positionnement (5), afin de positionner le gabarit de positionnement (5), et dans lequel le micro-outil (4) est attaché à la partie de maintien (30) après que la partie de maintien (30) maintenant le gabarit de positionnement (5), dont le positionnement a été terminé, libère le gabarit de positionnement (5) dans un état de fixation d'une position de la partie de maintien (30) sur un axe horizontal (Y) orthogonal à la direction axiale (c, d).
5. Procédé de positionnement d'un micro-outil (4) selon la revendication 4, dans lequel le mécanisme de déplacement linéaire (9) fait avancer la partie de maintien (30) pour qu'elle retourne à une position où le gabarit de positionnement (5) a été positionné dans le processus de positionnement de gabarit de positionnement (S1) après le recul de la partie de maintien (30) maintenant le gabarit de positionnement (5), dont le positionnement a été terminé dans le processus de positionnement de gabarit de positionnement (S1).
6. Dispositif de micromanipulateur (1) comprenant :
un micro-outil (4) ayant une partie d'attache d'outil (42b) prévue à une position éloignée d'une extrémité avant du micro-outil (4) vers une extrémité de base du micro-outil (4) d'une distance prescrite (L1) établie au préalable, et
un micromanipulateur (2) pour réaliser une micro-opération sur un objet d'inspection dans un champ de vision d'un microscope (6) à l'aide du micro-outil (4),
caractérisé en ce que le dispositif de micromanipulateur (1) comprend
un gabarit de positionnement (5) ayant une partie d'attache de gabarit (5c) prévue à une position éloignée d'un
repère (5b) prévu au niveau d'une portion d'extrémité avant du gabarit de positionnement (5) vers une extrémité de base du gabarit de positionnement (5) d'une distance (L2) qui a la même longueur que la distance prescrite (L1) ; une partie de maintien (30) capable de maintenir de façon détachable la partie d'attache d'outil (42b) du microoutil (4) et de maintenir de façon détachable la partie d'attache de gabarit (5c) du gabarit de positionnement (5) au lieu de la partie d'attache d'outil (42b) du micro-outil (4) ; et
un mécanisme de déplacement (3) pour positionner le gabarit de positionnement (5) maintenu par la partie de maintien (30) dans une direction axiale (c, d) du gabarit de positionnement (5).
7. Dispositif de micromanipulateur (1) selon la revendication 6 , dans lequel le mécanisme de déplacement (3) comprend :
un mécanisme de rotation (8) pour faire pivoter la partie de maintien (30) maintenant le gabarit de positionnement (5) autour du repère (5b) ; et
un mécanisme de déplacement linéaire (9) pour déplacer linéairement la partie de maintien (30) maintenant le gabarit de positionnement (5) dans la direction axiale (c, d) du gabarit de positionnement (5).

FIG. 4A

FIG. 4B

FIG. 4D

FIG. 8

EP 3203295 B1

FIG. 9A

FIG. 10

FIG. 11

FIG. 14A

FIG. 14B

FIG. 15A

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 3295836 B [0005]
- EP 2541300 A1 [0005]
- US 4920053 A [0005]

