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Description

Background of the Invention

[0001] Moaodifications and manipulations to an image stored, for example, in a computer memory, are often made to
improve, change, modify the appearance of or otherwise manipulate a scene depicted in the image. For example,
dynamic range compression algorithms are typically used to adust image intensity such that a dark image can be
brightened for a more aesthetically pleasing display. Gamma correction is an industry standard dynamic range com-
pression method for brightening an image for display on a monitor or in print. According to the standard, an image is
adjusted such that for each pixel in the image, the intensity is measured on a scale of 0 to 1, and the brightened intensity
is equal to the original intensity raised to a power of (1.0/gamma), where gamma is a value greater than or equal to 1.0.
Gamma correction brightens all pixels some amount irrespective of illumination. Like other forms of dynamic range
compression, gamma correction brightens shadows without making them more similar in color to the color correct
unshaded counterparts, and thus distorts the image appearance.

[0002] A challenge in the utilization of computers to accurately and correctly perform operations relating to images is
the development of algorithms that truly reflect and represent physical phenomena occurring in the visual world. When
utilizing conventional techniques for image modification, as for example, a gamma correction, unacceptable distortion
of image characteristics, such as color, often occurs. Moreover, many manipulations of an image ignore the fact that
the results of a desired change, such as, for example, a change in the geometry of a scene, affects illumination aspects
of the image differently than material aspects. Accordingly, there is a persistent need for the development of accurate
and correct techniques that can be utilized in the operations of computers relating to images, to provide improved image
appearance, such as, for example, a more accurately correct color, image intensity adjustment or more versatily for a
user to manipulate or modify an image.

[0003] The article "Image-Based Modeling and Photo Editing" by Byong Mok Oh et al., Conference proceedings ACM
SIGGRAPH 2001, Computer Graphics, New York, describes the segregation of a single image into a texture image and
an illumination image. The approach is based on the assumption that illumination in an image is of large-scale variation.
Some problems and improvements, by using depth and surface normal information as well as by employing an iterative
filtering process, are also discussed. The article further mentions the possibility of editing the illumination image and
merging it again with the texture image to obtain a new image with modified illumination. Changes to the texture image
are also possible.

Summary of the Invention

[0004] The present invention provides a method and system implementing image processing techniques that utilize
spatio-spectral information relevantto animage, to perform image modifications and manipulations with improved results,
such as, for example, a more accurately correct color, image intensity adjustment.

[0005] In afirst exemplary embodiment of the present invention, an automated, computerized method is provided for
processing an image. According to a feature of the present invention, the method comprises the steps of providing an
image file depicting an image, in a computer memory, performing an image segregation operation on the image file to
generate intrinsic images corresponding to the image, modifying a preselected one of the set of intrinsic images and
merging the preselected one of the set of intrinsic images relative to the set of intrinsic images to provide a modified
output image.

[0006] In a second exemplary embodiment of the present invention, a computer system is provided. The computer
system comprises a CPU and a memory storing an image file containing an image. According to a feature of the present
invention, the CPU is arranged and configured to execute a routine to perform an image segregation operation on the
image file to generate intrinsic images corresponding to the image, to modify a preselected one of the set of intrinsic
images and to merge the preselected one of the set of intrinsic images relative to the set of intrinsic images to provide
a modified output image.

[0007] In a third exemplary embodiment of the present invention, an automated, computerized method is provided for
processing an image. According to a feature of the present invention, the method comprises the steps of providing an
image file depicting an image, in a computer memory, utilizing a spatio-spectral operator/constraint/solver model to
perform an image segregation operation on the image file to generate a set of intrinsic images corresponding to the
image, modifying a preselected one of the set of intrinsic images and merging the modified one of the set of intrinsic
images relative to the set of intrinsic images to provide a modified output image.

[0008] In a fourth exemplary embodiment of the present invention, a computer system is provided. The computer
system comprises a CPU and a memory storing an image file containing an image. According to a feature of the present
invention, the CPU is arranged and configured to execute a routine to utilize a spatio-spectral operator/constraint/solver
model to perform an image segregation operation on the image file to generate intrinsic images corresponding to the
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image, to modify a preselected one of the set of intrinsic images and to merge the preselected one of the set of intrinsic
images relative to the set of intrinsic images to provide a modified output image.

[0009] In accordance with yet further embodiments of the present invention, computer systems are provided, which
include one or more computers configured (e.g., programmed) to perform the methods described above. In accordance
with other embodiments of the present invention, computer readable media are provided which have stored thereon
computer executable process steps operable to control a computer(s) to implement the embodiments described above.
The automated, computerized methods can be performed by a digital computer, analog computer, optical sensor, state
machine, sequencer or any device or apparatus that can be designed or programed to carry out the steps of the methods
of the present invention.

Brief Description of the Drawings

[0010]
Figure 1 is a block diagram of a computer system arranged and configured to perform operations related to images.
Figure 2a shows an n X m pixel array image file for an image stored in the computer system of figure 1.

Figure 2b is an 11 X 11 pixel array formed from the upper left hand corner of the image file of figure 2a, for use in
the generation of an histogram, according to a feature of the present invention.

Figure 2c shows a diagram of the histogram generated from the 11 X 11 pixel array of figure 2b.

Figure 3 is a flow chart for a routine to perform a modification to an image of the image file of figure 2a, according
to a feature of the present invention.

Figure 4 is a functional block diagram of an image segregation system architecture, implemented in the computer
system of figure 1, according to a feature of the present invention.

Figure 5 shows a graphical user interface for use in connection with an implementation of the image segregation
system architecture feature of the present invention.

Figure 6a is a flow chart for identifying Type C token regions in the image file of figure 2a, according to a feature of
the present invention.

Figure 6b is an original image used as an example in the identification of Type C tokens.
Figure 6¢ shows Type C token regions in the image of figure 6b.

Figure 6d shows Type B tokens, generated from the Type C tokens of figure 6c¢, according to a feature of the present
invention.

Figure 7 is a flow chart for a routine to test Type C tokens identified by the routine of the flow chart of figure 6a,
according to a feature of the present invention.

Figure 8 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technique, according to a
feature of the present invention.

Figure 9 is a flow chart for creating a token graph, containing token map information, according to a feature of the
present invention.

Figure 10 is a flow chart for constructing Type B tokens via an adjacent planar token merging technique, according
to a feature of the present invention.

Figure 11 is a flow chart for generating Type C tokens via a local token analysis technique, according to a feature
of the present invention.

Figure 12 is a flow chart for constructing Type B tokens from Type C tokens generated via the local token analysis
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technique of figure 11, according to a feature of the present invention.
Figure 13 is a representation of an [A] [x] = [b] matrix relationship according to a feature of the present invention.

Figure 14 is a functional block diagram for a service provider component for use in the image segregation system
architecture of figure 4.

Detailed Description of the Preferred Embodiments

[0011] Referring now to the drawings, and initially to figure 1, there is shown a block diagram of a computer system
10 arranged and configured to perform operations related to images. A CPU 12 is coupled to a device such as, for
example, a digital camera 14 via, for example, a USB port. The digital camera 14 operates to download images stored
locally on the camera 14, to the CPU 12. The CPU 12 stores the downloaded images in a memory 16 as image files 18.
The image files 18 can be accessed by the CPU 12 for display on a monitor 20, or for print out on a printer 22.

[0012] Alternatively,the CPU 12 can be implemented as a microprocessor embedded in a device such as, for example,
the digital camera 14 or a robot. The CPU 12 can also be equipped with a real time operating system for real time
operations related to images, in connection with, for example, a robotic operation or an interactive operation with a user.
[0013] As shown in figure 2a, each image file 18 comprises an n X m pixel array. Each pixel, p, is a picture element
corresponding to a discrete portion of the overall image. All of the pixels together define the image represented by the
image file 18. Each pixel comprises a digital value corresponding to a set of color bands, for example, red, green and
blue color components (RGB) of the picture element. The present invention is applicable to any multi-band image, where
each band corresponds to a piece of the electro-magnetic spectrum. The pixel array includes n rows of m columns each,
starting with the pixel p (1,1) and ending with the pixel p(n, m). When displaying or printing an image, the CPU 12 retrieves
the corresponding image file 18 from the memory 16, and operates the monitor 20 or printer 22, as the case may be,
as a function of the digital values of the pixels in the image file 18, as is generally known.

[0014] According to a feature of the present invention, in an image process, the CPU 12 operates to analyze and
process information, for example, the RGB values of the pixels of an image stored in an image file 18, to achieve various
objectives, such as, for example, a more accurately correct color, modification of an image. Pursuant to a feature of an
exemplary embodiment of the present invention, a segregation of illumination and material aspects of a scene depicted
in the image of the image file 18 is performed to generate corresponding intrinsic images. The intrinsic images include,
for example, an illumination image and a material image, both corresponding to the original image. Modifications and
manipulations to the image are then made to improve, change, modify the appearance of or otherwise manipulate a
scene depicted in the image. According to a feature of the presentinvention, the modifications to the image are selectively
made to one or the other or both of the intrinsic images, to achieve results that are an improvement over what could be
otherwise obtained in a modification or manipulation of the original image. As used herein, the term modify is used to
mean any of a modification, manipulation or any other change to an image.

[0015] Such modifications can be, for example, in respect of the intensity or color of the image, or manipulations of
shadows such as changes to the patterns or character of shadow appearance in the image. Manipulations can include
geometry editing to morph, warp or perform any other geometric transformation of features of the image. The modified
intrinsic image is then merged with the other intrinsic image, to provide a modified or manipulated output image.
[0016] To thatend, figure 3 shows a flow chart for a routine to perform an image modification, for example, an intensity
adjustment such as a gamma correction, to an image of the image file 18 of figure 2a, according to a feature of the
present invention. In step 1000, the CPU 12 retrieves an image file 18 from the memory 16. In step 1002, the CPU 12
performs an image segregation operation to generate each of an illumination image and a material image, both corre-
sponding to the image depicted in the retrieved image file 18. According to a feature of the present invention, the image
segregation operation performed by the CPU 12 implements a spatio-spectral operator/constraint/solver model to identify
the illumination and material components of the image.

[0017] A fundamental observation underlying a basic discovery of the present invention, is that an image comprises
two components, material and illumination. All changes in an image are caused by one or the other of these components.
Spatio-spectral information is information relevant to contiguous pixels of an image depicted in an image file 18, such
as spectral relationships among contiguous pixels, in terms of color bands, for example RGB values of the pixels, and
the spatial extent of the pixel spectral characteristics relevant to a characteristic of the image, such as, for example, a
single material depicted in the image or illumination flux effecting the image. When one of material and illumination is
known in an image, the other can be readily deduced.

[0018] Moreover, the illumination flux includes an incident illuminant and an ambient illuminant. The spectra for the
incident illuminant and the ambient illuminant can be different from one another. Thus, a spectral shift is caused by a
shadow, i.e., a decrease of the intensity of the incident illuminant. The spectral shift can cause a variance in color of
material depicted in the scene, from full shadow, through the shadow penumbra, to fully lit. Pursuant to a feature of the
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present invention, spectral shift phenomena is captured in spatio-spectral information. The spatio-spectral information
includes a spectral ratio: a ratio based upon a difference in color or intensities between two areas of a scene depicted
in an image, which may be caused by different materials (an object edge), an illumination change (illumination boundary)
or both.

[0019] According to a further feature of the present invention, spatio-spectral operators are generated to facilitate the
process performed in step 1002, for the segregation of illumination and material aspects of a scene depicted in the
retrieved imagefile 18. Spatio-spectral operators comprise representations or characteristics of animage thatencompass
spatio-spectral information usable in the processing of material and illumination aspects of an image. The spatio-spectral
operators are subject to constraints that define constraining spatio-spectral relationships between the operators, for
input to a solver. The solver includes a mathematical processing engine that operates to obtain an optimized solution
for the generation of an intrinsic image, such as a material image and/or an illumination image derived from the original
image stored in the retrieved image file 18, as a function of the constraining relationships between the spatio-spectral
operators.

[0020] Spatio-spectral operators include, for example, tokens, token map information, log chromaticity representation
values, X-junctions, BIDR model representations, a boundary representation, and a texton histogram based pixel rep-
resentation.

[0021] Pursuant to a feature of the present invention, a token is a connected region of an image wherein the pixels of
the region are related to one another in a manner relevant to identification of image features and characteristics such
as identification of materials and illumination. The use of tokens recognizes the fact that a particular set of material/illu-
mination/geometric characteristics of an image extends beyond a single pixel, and therefore, while the image processing
described herein can be done on a pixel level, tokens expedite a more efficient processing of image properties. The
pixels of a token can be related in terms of either homogeneous factors, such as, for example, close correlation of color
values among the pixels, or nonhomogeneous factors, such as, for example, differing color values related geometrically
in a color space such as RGB space, commonly referred to as a texture. Exemplary embodiments of the present invention
provide methods and systems to identify various types of homogeneous or nonhomogeneous tokens for improved
processing of image files. The present invention utilizes spatio-spectral information relevant to contiguous pixels of an
image depicted in an image file 18 to identify token regions.

[0022] According to one exemplary embodiment of the present invention, homogeneous tokens are each classified
as either a Type A token, a Type B token or a Type C token. A Type A token is a connected image region comprising
contiguous pixels that represent the largest possible region of the image encompassing a single material in the scene.
A Type B token is a connected image region comprising contiguous pixels that represent a region of the image encom-
passing a single material in the scene, though not necessarily the maximal region corresponding to that material. A Type
C token comprises a connected image region of similar image properties among the contiguous pixels of the token, for
example, similar color and intensity, where similarity is defined with respect to a noise model for the imaging system
used to record the image.

[0023] Alineartoken is a nonhomogeneous token comprising a connected region of the image wherein adjacent pixels
of the region have differing color measurement values that fall within a cylinder in RGB space, from a dark end (in
shadow) to a bright end (lit end), along a positive slope. The cylinder configuration is predicted by a bi-illuminant dichro-
matic reflection model (BIDR model), according to a feature of the present invention, when the color change is due to
an illumination change forming a shadow (i.e. a decrease in the intensity of the incident illuminant as the interplay
between the incident or direct illuminant and the ambient illuminant in the illumination field) over a single material of a
scene depicted in the image.

[0024] For purposes of describing, identifying and using linear tokens, the BIDR model can be stated as: I(x, y z, e,
& 2) =cp (M) lg () vp + My (A) c, (1), where: I(nyy 2,6, 6, A) is the radiance of a surface point at (x, y, z) in the direction 0,
¢ for the wavelength A, ¢, (1) is the geometry independent body reflectance of a surface for the wavelength %, Iy (1) is
the incident illuminant for the wavelength . v, is the product of a shadow factor sx, , , and a geometric factor my, (9;),
and Ma (&) is the integral of the ambient illuminant and geometric body reflectance over a hemisphere, excluding the
incident illuminant. For more detailed information on the BIDR model, reference should be made to U. S. Application
Serial No. 11/341,751, filed January 27, 2006, entitled: "Bi-illuminant Dichromatic Reflection Model For Image Manipu-
lation," published as US 2007/0176940 on August 2, 2007.

[0025] Token map information indicates locations of tokens within an image, relative to one another. The map infor-
mation is used to identify neighboring tokens for performing an analysis of token neighbor relationships relevant to
constraining spatio-spectral relationships between tokens, for input to the solver.

[0026] Log chromaticity representation values provide illumination invariant values for pixels of the image. Logarithmic
values of the color band values of the image pixels are plotted on a log-color space graph. The logarithmic values are
then projected to a log-chromaticity projection plane oriented as a function of the BIDR model. The chromaticity plane
values are substituted for the color band values (for example, RGB values) of each pixel. For more detailed information
on log chromaticity representation values, reference should be made to U. S. Application Serial No. 11/403,719, filed
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April 13, 2006, entitled: "Method And System For Separating lllumination And Reflectance Using a Log Color Space,"
published as US 2007/0242878 on October 18, 2007.

[0027] An X-junction is an area of an image where a material edge and an illumination boundary cross one another.
An X-junction is an optimal location for an accurate analysis of material and illumination aspects of an image.

[0028] A boundary representation is an arrangement of pixels, on each side of a boundary, formed by, for example,
adjacent Type B tokens. The arrangement is used to facilitate an analysis of the boundary to classify the boundary as
a material boundary on a smooth surface (as opposed to another type of boundary, for example, an illumination edge,
depth boundary or simultaneous illumination and material change). The pixel representation is configured to provide
samples of pixels within each of the Type B tokens forming the boundary. The pixels of the samples are subject to spatio-
spectral analysis, and the results are compared to determine the likelihood that the respective boundary corresponds
to a material change.

[0029] A texton is a homogeneous representation for a region of an image that comprises a texture. Image texture
can be defined as a function of spatial variation in pixel intensities. Image texture patterns are frequently the result of
physical or reflective properties of the image surface. Commonly, an image texture is associated with spatial homogeneity
and typically includes repeated structures, often with some random variation (e.g., random positions, orientations or
colors). Image textures are also often characterized by certain visual properties such as regularity, coarseness, contrast
and directionality. An example of image texture is the image of a zebra skin surface as it appears to be spatially homog-
enous and seems to contain variations of color intensities which form certain repeated patterns. Some image textures
can be defined by geometric characteristics, such as stripes or spots. A texton based operator transforms patterns of
differing reflectance caused by a textured material into a homogeneous representation that captures the spectral and
spatial characteristics of the textured region in the image.

[0030] Constraints comprise, for example, an anchor constraint, a same illumination constraint, a smooth illumination
constraint, a Type B token constraint, a Linear token constraint, a BIDR enforcement constraint, a same texton histogram
constraint, a log chromaticity similarity constraint, an X junction constraint, and a boundary representation constraint.
Each constraint is configured as a constraint generator software module that defines the spatio-spectral operators utilized
by the respective constraint and provides an expression of the constraining relationship imposed upon the constituent
operators.

[0031] An anchor constraint utilizes a number of brightest/largest Type C tokens in an image. The constraining rela-
tionship is that the material of the selected brightest/largest Type C tokens is constrained to be an absolute value for
the color/brightness observed in the image. The constraint anchors a material map for the image atan absolute brightness
to avoid relative brightness constraints.

[0032] A same illumination constraint utilizes Type C tokens and Type B tokens identified in an image and token map
information. The constraining relationship is that adjacent Type C tokens, as indicted by the token map information, are
at the same illumination, unless the adjacent Type C tokens are part of the same Type B token. The term "same" in
connection with the term "illumination"is used to mean an average value with respect to a noise model for the imaging
system used to record the image. This constrains any observed differences in appearance between adjacent Type C
tokens, that are not part of the same Type B token, to be a material change, as will appear.

[0033] A smooth illumination constraintis similar to the same illumination constraint. However, rather than constraining
all pixels of adjacent Type C tokens to be of the same illumination, as in the same illumination constraint, in the smooth
illumination constraint, the constraint is based upon the average illumination of the pixels near a shared boundary
between adjacent Type C tokens. This constrains the illumination field to be somewhat smooth, as opposed to piecewise
constant (the same, as defined above) throughout a token.

[0034] A Type B token constraint also utilizes Type C tokens and Type B tokens. However, the constraining relationship
is that all Type C tokens that are part of the same Type B token are constrained to be of the same material. This constraint
enforces the definition of a Type B token, that is, a connected image region comprising contiguous pixels that represent
a region of the image encompassing a single material in the scene, though not necessarily the maximal region corre-
sponding to that material. Thus, all Type C tokens that lie within the same Type B token are by the definition imposed
upon Type B tokens, of the same material, though not necessarily of the same illumination. The Type C tokens are
therefore constrained to correspond to observed differences in appearance that are caused by varying illumination.
[0035] Accordingly, the Type B token constraint is complementary to the same and smooth illumination constraints,
which, as opposed to illumination change, constrain observed differences to correspond to material change, as described
above. This is due to the fact that in each of the same and smooth illumination constraints, Type C tokens that are
adjacent and not part of the same Type B token, are constrained to the same illumination. These Type C tokens should
comprise different materials, since by the constraint, they are notin the same Type B token and therefore, by the definition
of Type B tokens enforced by the constraint, do not encompass a single material, so illumination should be a constant,
and any observed difference is considered as attributable to a material change.

[0036] To summarize, pursuant to a feature of the present invention, the Type C and Type B token spatio-spectral
operators are defined to provide characteristics of an image that enable segregation of illumination and material. Type



10

15

20

25

30

35

40

45

50

55

EP 2 425 377 B1

C tokens each comprise a connected image region of similar image properties, for example similar color, as recorded
and stored in an image file 18. Thus, adjacent Type C tokens indicate some form of change in the image or else they
would form the same Type C token. Type B tokens encompass a single material. The complementary constraints of the
same/smooth illumination constraints and the Type B token constraint enforce relationships between the tokens that
indicate either a material change or an illumination change.

[0037] Ifthe adjacent Type C tokens are within the same type B token, as in the Type B token constraint, the differences
between them should correspond to illumination change due to the same material property of the common Type B token.
If the adjacent Type C tokens are not within the same Type B token, as in the same/smooth illumination constraints, the
difference between them should then correspond to a material change since they are not both defined by a common,
single material Type B token.

[0038] A Linear token constraint utilizes Type C tokens and Linear tokens. The constraining relationship is that a
difference between two Type C tokens, spaced by a Linear token, approximately equals a characteristic illuminant
spectral ratio for the image. As defined, a Linear token follows a cylinder configuration along a positive slope, through
color space. The BIDR model predicts that the positive slope equals a characteristic illuminant spectral ratio for the
image. Thus, the color difference between two Type C tokens, one at each of the dark end and bright end of a Linear
token, should reflect the value of the respective characteristic illuminant spectral ratio for the image.

[0039] A BIDR enforcement constraint utilizes Type C tokens and a BIDR model defined normal vector for the log-
chromaticity projection plane. The constraining relationship is that the illumination for all Type C tokens in a local patch
of the image forms a set of parallel lines in log-color space, the orientation of the parallel lines being defined by the BIDR
model defined normal vector. The constraint therefore enforces the illumination field present in the image to explicitly fit
the BIDR model prediction for the illumination.

[0040] Thus, each of the Linear token constraint and the BIDR enforcement constraint utilize BIDR model predictions
as a basis to segregate illumination and material aspects of an image. The BIDR model predicts a color change in an
image when the color change is due to an illumination change forming a shadow (i.e. a decrease in the intensity of the
incident illuminant as the interplay between the incident or direct illuminant and the ambient illuminant in the illumination
field) over a single material of a scene depicted in the image. The color change prediction of the BIDR model accurately
constrains all color band variations among Type C tokens to illumination field effects occurring in an image by operating
as afunction of the interplay between the spectral variations occurring between incident illuminant and ambient illuminant
components of the illumination field. Thus, BIDR model based constraints couple all color band variations into one
integral constraining relationship.

[0041] A same texton histogram constraint utilizes Type C tokens and texton histogram operators identified for texture
regions within an image. A texton analysis is utilized wherein each pixel of the image (or pixels of those regions of an
image identified as comprising a texture) from the recorded color band representation of the respective image file 18,
such as, for example, RGB color band values, is converted to a two band representation wherein the two bands comprise
a texton label and a texton histogram label. The two band representations are then used to identify texture tokens, as
will be described below. A constraint can be imposed that all Type C tokens within the same texture token are of the
same mean material.

[0042] A log chromaticity similarity constraint utilizes Type C tokens and log chromaticity representation values. The
constraining relationship is that those Type C tokens having pixels with similar log chromaticity representation values
are constrained to a same color value, with observed differences being attributed to variations in the illumination field.
[0043] An X-junction constraint utilizes Type C tokens and X-junction operators. As noted above, an X-junction is an
area of an image where a material edge and an illumination boundary cross one another. X-junctions are typically
identified by four Type C tokens, two pairs of same material Type C tokens forming the material edge, with each same
material pair including an illumination boundary dividing the respective same material into lit and shadowed pairs of
Type C tokens. The constraining relationship: 1) a Type B token constraint is imposed between each same material pair
of Type C tokens forming the X-junction (those with an illumination boundary between them), and 2) a same illumination
constraint is imposed between each pair of Type C tokens forming the material edge of the X-junction. For a more
detailed description of X-junctions and the relationships of constituent tokens, reference should be made to U. S. Appli-
cation Serial No. 11/341,742, filed January 27, 2006, entitled: "Method And System For Identifying lllumination Flux In
An Image," published as US 2006/0177149 on August 10, 2006.

[0044] A boundary representation constraint is defined by a standard ratio constraint. An analysis performed on a
boundary representation, when indicating a material change, provides an estimate of the ratio of colors between two
adjacent regions defined by the boundary, for example, the adjacent Type B tokens, even when the illumination varies
over the regions. The constraint states that the ratio of the colors of two adjacent regions is X. The boundary representation
analysis is executed at the level of Type B tokens, to classify a boundary as being caused by a material change, then
propagated down to the level of the constituent Type C tokens. For a more detailed description of a boundary analysis,
at the Type B token level, reference should be made to U. S. Application Serial No. 12/079,878, filed March 28,2008,
entitled "System and Method For lllumination Invariant Image Segmentation."



10

15

20

25

30

35

40

45

50

55

EP 2 425 377 B1

[0045] According to a feature of the present invention, the boundary representation constraint states that all adjacent
pairs of Type C tokens along the boundary, (one Type C token on each side of the boundary, and all of the Type C
tokens being within the Type B tokens forming the respective boundary), have colors that satisfy the ratio X, as indicated
by the boundary representation analysis.

[0046] According to a preferred embodiment of the present invention, each of the above described constraints can be
classified into one of three basic types of constraints, an absolute material color constraint, a same material constraint
and a relative reflectance constraint. The absolute material constraint constrains the material at a particular location of
an image to be a certain color, as implemented in, for example, the anchor constraint. The same material constraint
constrains operators relevant to an image (for example, two pixels or Type C tokens) to be of the same material. The
same material type of constraint can be implemented in, for example, Type B, X-junction, log chromaticity similarity,
same texton histogram and linear token constraints. The relative reflectance constraint constrains operators relevant to
an image (for example, two pixels or Type C tokens) to have a similarity of reflectance characteristics, such as defined
by smooth illumination and same illumination constraints, and which can be specified by X-junction, and boundary
representation constraints.

[0047] An exemplary solver according to a feature of the present invention comprises a mathematical processing
engine for executing an optimizing function, for example, optimization of results in an equation expressed by : [A] [X] =
[b], where [A] is a matrix of values that are to be satisfied by (and therefore, taken as solved for by) the definitions of the
operator(s) and the constraining relationship(s) for the operator(s), as indicated by selected constraint(s), [x] is a matrix
of variables for which the equation is finding an optimal solution, for example, one of anillumination or material component
of an image component, for example, a pixel or token, and [b] is a matrix of values observed in an image selected for
processing, for example, the recorded values for the RGB color bands of each pixel of an image file 18. The optimizing
equation can be implemented in a mathematical optimizing function selected from a set of known optimization solvers
such as, for example, known convex optimization operations such as aleast squares solver, or a preconditioned conjugate
gradient solver.

[0048] According to a further feature of the present invention, factors including bounds, are introduced in a solver
operation, in addition to constraining relationships, as a function of real world illumination and material phenomena, to
keep material/illumination values within physically plausible ranges, such as a limit 1, limit infinity solver (L4, L,), a
bounded least squares solver, or a bounded L, L,, solver, as will be described below.

[0049] Figure 4 shows a functional block diagram of an image segregation system architecture, implemented in, for
example, the computer system of figure 1, according to a feature of the present invention. Alternatively, the functional
blocks of figure 4 can be implemented in a dedicated hardware circuit arranged to perform the functionality of the blocks
of figure 4. An image 32 (as depicted in an image file 18) is input to a preprocessing block 33. The preprocessing block
33 can perform such functions as correction of chromatic aberration in the image 32, combining multiple images to
provide a high dynamic range image, linearize pixel data for the image, and so on, for an image optimized for processing.
The pre-processed image is then input to a Type C tokenization block 35 which operates to identify Type C tokens in
the pre-processed image, in the manner described below. Type C tokens are common to many of the constraints utilized
in exemplary embodiments of the present invention, thus, an initial identification of Type C tokens for an input image 32
expedites further processing.

[0050] In an exemplary embodiment of the present invention, the CPU 12 executes code to implement both the
preprocessing block 33 and the Type C tokenization block 35, as well as a service provider 24, that functions as a central
agent and caching structure (configured in the memory 16), to handle an image for processing according to the teachings
of the present invention. The service provider 24 receives and stores the pre-processed image and related Type C token
information from the Type C tokenization block 35, and is coupled to an operators block 28 (executed by the CPU 12)
arranged to generate any other operators for the image required by selected constraints, as will appear. The service
provider 24 is also coupled to a global features extraction input 29. The global features extraction input 29 can be used
to provide the system with information relevant to an image being processed, such as an indication of light source when
the image was taken (sunlight, fluorescent light, incandescent light), time of day, location, domain knowledge, such as
information relevant to the nature of the image, such as interior, exterior, buildings, lawns with green grass, trees with
leaves in bloom, etc., and any other parameters relevant to image processing. The service provider 24 stores the global
features extraction input 29 with a related input image 32.

[0051] A constraintbuilder 26 is coupled to the service provider 24. The constraint builder 26 uses a constraint generator
library (configured within the memory 16) that stores the constraint generator software modules for the various constraints
described above. The service provider 24 and constraint builder 26 operate to arrange spatio-spectral operators relevant
to the pre-processed image, according to selected ones of the constraint generator software modules, in for example,
the [A] [X] = [b] matrix equation.

[0052] A solver 30 (executed by the CPU 12) is coupled to the constraint builder 26, and implements an optimization
operation, as described above, for an optimal solution for the [A] [X] = [b] matrix equation, for use in generating intrinsic
images from the pre-processed image. The solver 30 is also coupled to a post-processing block 36 (executed by the
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CPU 12) for certain post-processing operations. The post-processing operations can include, for example, monotonicity
maintenance. In monotonicity maintenance, if two large regions exhibit a linear transition in the input image 32, the
transition should remain a linear transition in the output intrinsic image 34. Post-processing can also include illumination
propagation, that serves to fill in holes left by the solver 30, illumination-map based white balancing and other filtering,
smoothing processes. The post-processing block 36 outputs intrinsic images 34.

[0053] Referring now tofigure 5, there is shown a graphical user interface (GUI) for use in connection with an exemplary
implementation of the image segregation system architecture feature of the present invention. The GUI of figure 5 is
displayed on the monitor 20 of the computer system 10 by the service provider 24 for a user to select a desired image
segregation operation. The upper left hand corner of the GUI indicates Open Image, Crop Image, Show Parameters,
and Segregate selection indicators. A user can move and click a cursor on a desired selector indicator. The Open Image
indicator lists all image files 18 currently stored in the memory 16 and enables the user to select an image for processing.
The selected image is input 32 (see figure 4) to the service provider 24 (via the preprocessing block 33 and the Type C
tokenization block 35) which operates to display the selected image at the upper center of the monitor 20 (figure 5).
[0054] A material image derived by operation of the exemplary segregation system from the selected image is output
34 (see figure 4) after execution of the image segregation processing by the solver 30 and displayed at the lower right
hand of the monitor 20 (figure 5). The derived illumination image is displayed at the lower right hand of the monitor 20
(figure 5).

[0055] According to a feature of the present invention, the Crop Image selector permits a user to crop a selected image
S0 as to process a portion of the overall image. The Show Parameter selector displays parameters related to the selected
image file 18. Parameters for each image file 18 can be stored in a parameter data file associated with a corresponding
image file 18, and include any parameters relevant to the processing of the image depicted in the associated image file
18, for example the global features extraction input 29. Parameters can include any data relevant to image processing
such as, for example, any variable for pixel analysis by the CPU 12, as for example, in the generation of spatio-spectral
operators, and domain knowledge, such as information relevant to the nature of the image, such as interior, exterior,
buildings, lawns with green grass, trees with leaves in bloom, etc.

[0056] Below the selection indicators is a list of each of the optimizing functions that can be used as the solver 30,
and a further list of each of the constraint generators contained in the constraint generator library of the constraint builder
26. A user selects a desired mathematical operation and one or more of the constraints to be imposed upon the selected
image. After selection of the image to be processed, the constraints to be imposed and the mathematical operation to
be executed, the user can click on the Segregate indicator to commence image segregation processing.

[0057] Upon commencement of the image segregation processing, the service provider 24 retrieves the constraint
generator software modules for the selected constraints to identify the spatio-spectral operators utilized by the selected
constraints. Any spatio-spectral operators not already stored by the service provider 24 are generated by the operators
block 28, for the image being segregated, and the service provider 24 caches the results. The cached results can be
reused in any subsequent operation for a selected image, with the same set of associated parameters.

[0058] For example, if the selected constraint is a same illumination constraint, the service provider 24 identifies Type
C tokens, Type B tokens and a token map for the selected image. The Type C tokens were generated by the Type C
tokenization block 35. The service provider 24 operates the operators block 28 to generate the remaining operators
specified by the same illumination constraint.

[0059] Referring now to figure 6a, there is shown a flow chart for generating Type C token regions in the image file of
figure 2a, according to a feature of the present invention. Type C tokens can be readily identified in an image by the
Type C tokenization block 35, utilizing the steps of figure 6a. The operators block 28 can then analyze and process the
Type C tokens to construct Type B tokens when specified by a selected constraint, as will appear.

[0060] Prior to execution of the routine of figure 6a, the CPU 12 can operate to filter the image depicted in a subject
image file 18. The filters may include an image texture filter, to, for example, transform patterns of differing reflectance
caused by a textured material into a homogeneous representation that captures the spectral and spatial characteristics
of the textured region in the image. Identification of Type B tokens can be difficult in an image texture. A textured image
contains materials with, for example, more than one reflectance function that manifests as a defining characteristic. For
example, the defining characteristic can be a pattern of colors within the texture, such that the texture displays a certain
distribution of colors in any patch or region selected from anywhere within the textured region of the image.

[0061] In many instances, the texture filters may only be required on part of an input image, as much of the image
may include homogeneously colored objects. Therefore, prior to application of the texture filters, it is useful to identify
and mask off regions of homogeneous color. The texture filters are then only applied to areas where there appear to be
textured materials. An example algorithm for identifying textured regions is as follows:

1) Execute a type C tokenization on the N-band color values (e.g. RGB), storing the token results in a region map
R, where each pixel in the region map has the token ID of the token to which it belongs (see description of figure 5a).
2) Execute a median filter on the region map R (e.g. each pixel P_ij is replaced by the median token ID of a 7x7 box
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around P_ij). Store the result in R-median.

3) Execute a filter on the original image that calculates the standard deviation of the pixels in a box around each
pixel (e.g. 7x7) for each color band. Put the resultin S.

4) For each pixel in S, divide the standard deviation calculated for each color band by an estimated noise model
value. An example noise model is Sn = A*maxValue + B*pixelValue, where maxValue is the maximum possible
colorband value, pixelValue is the intensity of a particular band, and A and B are constants experimentally determined
for the imaging system (e.g. A = 0.001 and B = 0.06 are typical). This step converts the standard deviation into a
normalized deviation for each color band. Store the results in Sn.

5) For each pixel in Sn, sum the squares of the normalized deviations for all N color bands, take the square root of
the result and divide by the number of bands N to create a deviation value D_ij. Compare the resulting deviation
value D_ij to a threshold (e.g. 1.0) assign a 1 to any pixel with a deviation value higher than the threshold, otherwise
assign the pixel a 0. Store the results in a texture mask image T.

6) For each pixel in T, if the texture mask value T_ij = 1 and the seed size of the token region with the id given in
the median region map R-median_ij is less than a threshold (e.g. < 4), label the pixel as a textured pixel. Otherwise,
label it as a homogeneous pixel. Store the result in the texture mask Tmask.

[0062] The output of the above algorithm is a mask, Tmask, which is an array of the size of the original image file 18
(n, m). Pixels (p(n, m)) having a corresponding Tmask location in the array with a 1 value should be treated as part of
an image region corresponding to texture materials and pixels with a corresponding Tmask array location having a value
of 0 should be treated as part of an image region corresponding to materials of homogeneous color.

[0063] The CPU 12 can execute a software module that implements any well known method handling textures, such
as, for example, a Laws filter bank, or wavelets (see, for example, Randen, T.[Trygve], HuseO, O.0.[0000 Céakon],
Filtering for Texture Classification: A Comparative Study, PAMI(21), No. 4, April 1999, pp. 291-310). See also: Are Filter
Banks Necessary? Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2003,
volume 2, pages 691-698.

[0064] In one exemplary embodiment of the present invention, Type C tokens are generated using an intensity histo-
gram representation for each pixel of an image (or, preferably, for pixels of the image in regions identified as comprising
atexture). The Type C tokens generated using intensity histograms are then used to generate Type B tokens. An intensity
histogram representation for each pixel in a texture filter output image can be produced using the following algorithm:

A) Loop through all memory addresses/indexes in the Tmask array (n, m);
B) At each memory address/index of the Tmask array determine whether the value at each location is 1 or 0;
C) If a memory address/index of the Tmask has a 1 value indicating texture:

a. Open the corresponding memory address/index in the corresponding image file 18 p(n, m) and access that
memory address/index;

b. Open that memory address/index for writing data;

c. Initialize N 8-bin histograms to zero, one for each color band;

d. For each pixel g within a neighborhood of p (for example, an 11x11 pixel array):

For each of the N color values Cn of g (e.g. RGB wherein each color value is set between 0-255);

(i) If N color value is between 0 and 31, then increment the first bin in 8-bin histogram of color N;

(ii) If N color value is between 32 and 64, then increment the second bin in 8-bin histogram of color N;
(i) If N color value is between 65 and 97, then increment the third bin in 8-bin histogram of color N;
(iv) If N color value is between 98 and 130, then increment the fourth bin in 8-bin histogram of color N;
(v) If N color value is between 131 and 163, then increment the fifth bin in 8-bin histogram of color N;
(vi) If N color value is between 164 and 196, then increment the sixth bin in 8-bin histogram of color N;
(vii) If N color value is between 197 and 229, then increment the seventh bin in 8-bin histogram of color N;
(viii) If N color value is between 230 and 255, then increment the eighth bin in 8-bin histogram of color N;

e. Concatenate the N 8-bin histogram values together into a single intednsity histogram comprising an 8xN
element vector;

f. Assign the 8xN element vector to the corresponding pixel p in the image file array p(n, m);

g. If current or next memory address/index is not last/Tmask (n, m), then move on to the next memory ad-
dress/index in Tmask (n, m) array and execute step B;

h. If current memory address/index is last/equal to Tmask (n, m), then cease looping through Tmask (n, m) array.
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D) If a memory address/index has a 0 value:

i. If current address/index is not a last element in Tmask (n, m) array, then move on to the next memory
address/index in Tmask (n, m) array and execute step B;

ii. If current memory address/index location is a last element in Tmask (n, m) array, then cease looping through
Tmask (n, m) array.

[0065] After the transformation for each pixel in the textured region of the image from a set of color bands, for example
RGB, to an intensity histogram vector comprising a set of filter outputs, for example the 8 X N concatenation, the image
is treated exactly as the original color band image with respect to identifying type C tokens with the 8 X N element
intensity histogram vector being used in place of the RGB color band values.

[0066] Fig. 2b shows an 11 X 11 pixel array at the upper left hand corner of an image file 18. The 11 X 11 pixel array
of figure 2b is used to produce an intensity histogram representation for pixel p(6,6) at the center Z of the array, according
to the exemplary algorithm described above. In our example, it is assumed that the 11 X 11 array is within a checkerboard
pattern within the image depicted in the image file 18. The checkerboard pattern comprises a pattern of alternating red,
green and blue boxes as shown. Thus, pixel p(6,6) of our example will have a 1 value in the corresponding Tmask
generated by the CPU 12.

[0067] Pursuant to the exemplary algorithm, three 8 bin histograms are initialized by the CPU 12 (see figure 2c), one
for each of the red, green and blue color values of the subject pixel p(6,6). The 11 X 11 pixel array is then used to
determine the values within the bins of the three histograms. In our example, the upper left hand section of the 11 X 11
array is a red box of the checkerboard pattern, and each pixel within that section (p(1,1) to p(5,5)) has an RGB value of
(123,0,0). The upper right hand section is green, thus the pixels within the section (p(1,7) to p(5,11)) each have an RGB
value of (0,123, 0). The lower left hand section is a blue box, with each of the pixels p(7,1) to p(11,5) having RGB values
of (0,0,123). Finally the lower right hand section of our example is again a red section, with each of the pixels p(7,7) to
p(11,11) having RGB values of (123,0,0), in the repeating red, green and blue checkerboard pattern.

[0068] As shown in Fig. 2b, the one (1) pixel thick cross-shaped border lines between red quadrant (p(1,1) to p(5,5)),
green quadrant (p(1,7) to p(5,11)), blue quadrant (p(7,1) to p(11,5)) and red quadrant (p(7,7) to p(11,11)) or any pixel
between p(6,1) to p(6,m) and any pixel between p(n,8) to p(11,6) may have an RGB value of (123,123,123). Pixel p(6,6)
at the center Z may also have the RGB value of (123,123,123).

[0069] Next, an 11 X 11 pixel box 301, with pixel Z at its center, is used to determine the value of pixel Z via an
histogram representation of pixel Z’s RGB color band values using the steps exemplarily described below. As shown in
Fig. 2b, p(1,1) has RGB color value of (123,0,0) indicating some presence of red color and absence of green color and
blue color. Since the red value of p(1,1) is 123, the corresponding bin for that number value in red 8 bin histogram, as
shown in Fig. 2c, would be incremented i.e. fourth bin within the red 8-bin histogram would be incremented. This process
would repeat itself until p(n,m) in pixel box 301 is reached. By this time, three 8-bin histograms, as shown in Fig. 2c,
may be filled with different values. These values may then be concatenated together into a single 8 X 3 element vector
and assigned to pixel Z in 11 X 11 pixel array depicted in the image file 18 of figure 2b.

[0070] Consequently, according to the exemplary algorithm described above and a checkerboard pattern within 11 X
11 pixel box 301 shown within image 18 depicted in Fig. 2b, the 3 8-bin histogram would be filled as follows:

[0071] Inred 8-bin histogram, the fourth bin would have a value of 71 (the amount of repetitions of red values between
98 and 130 in 25 pixels of 2 red quadrants plus the amount of repetitions of red values between 98 and 130 in 11 pixels
between p(6,1) to p(6,m) plus the amount of repetitions of red values between 98 and 130 in 10 pixels between p(n,6)
to p(11,6) resulting in 25+25+11+10=71). In a similar calculation, the first bin would have a value of 50 to indicate all of
the pixels with a zero value for red. All the other bins in red 8-bin histogram would have the values of 0. Thus, the red
8-bin histogram would be [50, 0, 0, 71, 0, 0,0,0].

[0072] In green 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of green values
between 98 and 130 in 25 pixels of the green quadrant plus the amount of repetitions of green values between 98 and
130in 11 pixels between p(6,1) to p(6,m) plus the amount of repetitions of green values between 98 and 130 in 10 pixels
between p(n,B) to p(11,6) resulting in 25+11+10=46). The first bin has a value of 75 (for zero values of green). All the
other bins in green 8-bin histogram would have the values of 0. Thus, the green 8-bin histogram would be [75, 0, 0, 46,
0,0,0,0].

[0073] Inblue 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of blue values between
98 and 130 in 25 pixels of the blue quadrant plus the amount of repetitions of blue values between 98 and 130 in 11
pixels between p(6,1) to p(6,m) plus the amount of repetitions of blue values between 98 and 130 in 10 pixels between
p(n,6) to p(11,8) resulting in 25+11+10=46). The first bin, again, has a value of 75. All the other bins in blue 8-bin
histogram would have the values of 0. Thus, the blue 8-bin histogram would be [75, 0, 0, 46, 0, 0, 0, Q].

[0074] Asaresultofthe above described algorithm, each 8-bin histogram, three in our example, would be concatenated
together into a single 8 X 3 element vector. Accordingly, this vector would be [50, 0, 0, 71,0, 0, 0, 0, 75, 0, 0, 46, 0, O,
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0,0,75,0,0,46,0,0,0,0].

[0075] Next, the above described vector would be assigned at p(6,6) at the center Z of the 11 X 11 array and therefore
replace the RGB value of pixel p(6,6), which originally was (123, 123, 123), with an intensity histogram set forth as [50,
0,0,71,0,0,0,0,75,0,0,46,0,0,0,0,75,0,0, 46,0, 0, 0, 0].

[0076] A 1storder uniform, homogeneous Type C token comprises a single robust color measurement among contig-
uous pixels of the image. At the start of the identification routine of figure 6a, the CPU 12 (executing as the Type C
tokenization block 35) sets up a region map in memory. In step 100, the CPU 12 clears the region map and assigns a
region ID, which is initially set at 1. An iteration for the routine, corresponding to a pixel number, is setati=0, and a
number for an N x N pixel array, for use as a seed to determine the token, is set an initial value, N = Ny, 1. Nggart €an be
any integer > 0, for example it can be set at set at 11 or 15 pixels.

[0077] At step 102, a seed test is begun. The CPU 12 selects a first pixel, i = (1, 1) for example (see figure 2a), the
pixel at the upper left corner of a first N x N sample of the image file 18. The pixel is then tested in decision block 104
to determine if the selected pixel is part of a good seed. The test can comprise a comparison of the color value of the
selected pixel to the color values of a preselected number of its neighboring pixels as the seed, for example, the N x N
array. The color values comparison can be with respect to multiple color band values (RGB in our example) of the pixel
or the filter output intensity histogram representation of the pixel, in the event the image was filtered for texture regions,
as described above. If the comparison does not result in approximately equal values (for example, within the noise levels
of the recording device for RGB values) for the pixels in the seed, the CPU 12 increments the value of i (step 106), for
example, i = (1, 2), for a next N x N seed sample, and then tests to determine if i = i, (decision block 108).

[0078] If the pixel value is at iy, @ value selected as a threshold for deciding to reduce the seed size for improved
results, the seed size, N, is reduced (step 110), for example, from N = 15 to N = 12. In an exemplary embodiment of the
present invention, i,.x €an be set ati = (n, m). In this manner, the routine of figure 5a parses the entire image at a first
value of N before repeating the routine for a reduced value of N.

[0079] After reduction of the seed size, the routine returns to step 102, and continues to test for token seeds. An Nstop
value (for example, N = 2) is also checked in step 110 to determine if the analysis is complete. If the value of N is at
Nstop, the CPU 12 has completed a survey of the image pixel arrays and exits the routine.

[0080] If the value of i is less than i, and N is greater than Nstop, the routine returns to step 102, and continues to
test for token seeds.

[0081] When a good seed (an N x N array with approximately equal pixel values) is found (block 104), the token is
grown from the seed. In step 112, the CPU 12 pushes the pixels from the seed onto a queue. All of the pixels in the
queue are marked with the current region ID in the region map. The CPU 12 then inquires as to whether the queue is
empty (decision block 114). If the queue is not empty, the routine proceeds to step 116.

[0082] In step 116, the CPU 12 pops the front pixel off the queue and proceeds to step 118. In step 118, the CPU 12
marks "good" neighbors around the subject pixel, that is neighbors approximately equal in color value to the subject
pixel, with the current region ID. All of the marked good neighbors are placed in the region map and also pushed onto
the queue. The CPU 12 then returns to the decision block 114. The routine of steps 114, 116, 118 is repeated until the
queue is empty. At that time, all of the pixels forming a token in the current region will have been identified and marked
in the region map as a Type C token. In the event the pixels comprise intensity histogram representations, the token
can be marked as Type Cr.

[0083] When the queue is empty, the CPU 12 proceeds to step 120. At step 120, the CPU 12 increments the region
ID for use with identification of a next token. The CPU 12 then returns to step 106 to repeat the routine in respect of the
new current token region.

[0084] Upon arrival at N = Nstop, step 110 of the flow chart of figure 5a, or completion of a region map that coincides
with the image, the routine will have completed the token building task. Figure 6b is an original image used as an example
in the identification of tokens. The image shows areas of the color blue and the blue in shadow, and of the color teal
and the teal in shadow. Figure 6¢ shows token regions corresponding to the region map, for example, as identified
through execution of the routine of figure 6a (Type C tokens), in respect to the image of figure 6b. The token regions
are color coded to illustrate the token makeup of the image of figure 6b, including penumbra regions between the full
color blue and teal areas of the image and the shadow of the colored areas.

[0085] Upon completion of the routine of figure 6a by the Type C tokenization block 35, the service provider 24 stores
the Type C token region information for the selected image. Prior to commencing any process to generate Type B tokens
from the identified Type C tokens, the operators block 28 tests each identified Type C token to make certain that each
Type C token encompasses a single material. While each Type C token comprises a region of the image having a single
robust color measurement among contiguous pixels of the image, the token may grow across material boundaries.
[0086] Typically, different materials connect together in one Type C token via a neck region often located on shadow
boundaries or in areas with varying illumination crossing different materials with similar hue but different intensities. A
neck pixel can be identified by examining characteristics of adjacent pixels. When a pixel has two contiguous pixels on
opposite sides that are not within the corresponding token, and two contiguous pixels on opposite sides that are within
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the corresponding token, the pixel is defined as a neck pixel.

[0087] Figure 7 shows a flow chart for a neck test for Type C tokens. In step 122, the CPU 12 examines each pixel of
an identified token to determine whether any of the pixels under examination forms a neck. The routine of figure 6 can
be executed as a subroutine directly after a particular token is identified during execution of the routine of figure 6a. All
pixels identified as a neck are marked as "ungrowable." In decision block 124, the CPU 12 determines if any of the pixels
were marked.

[0088] If no, the CPU 12 exits the routine of figure 7 and returns to the routine of figure 6a (step 126).

[0089] If yes, the CPU 12 proceeds to step 128 and operates to regrow the token from a seed location selected from
among the unmarked pixels of the current token, as per the routine of figure 6a, without changing the counts for seed
size andregion ID. During the regrowth process, the CPU 12 does notinclude any pixel previously marked as ungrowable.
After the token is regrown, the previously marked pixels are unmarked so that other tokens may grow into them.
[0090] Subsequent to the regrowth of the token without the previously marked pixels, the CPU 12 returns to step 122
to test the newly regrown token.

[0091] Neck testing identifies Type C tokens that cross material boundaries, and regrows the identified tokens to
provide single material Type C tokens suitable for use in creating Type B tokens. Figure 6d shows Type B tokens
generated from the Type C tokens of figure 6¢, according to a feature of the present invention. The present invention
provides several exemplary techniques of pixel characteristic analysis for constructing Type B tokens from Type C
tokens. One exemplary technique involves arbitrary boundary removal. The arbitrary boundary removal technique can
be applied to Type C tokens whether they were generated using N color band values (RGB in our example) of the pixel
or the filter output representation of the pixel, in the event the image was filtered. Actual boundaries of any particular
Type C token will be a function of the seed location used to generate the token, and are thus, to some extent arbitrary.
There are typically many potential seed locations for each particular token, with each potential seed location generating
a token with slightly different boundaries and spatial extent because of differences among the color values of the pixels
of the various seeds, within the noise ranges of the recording equipment.

[0092] Figure 8 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technique, according
to a feature of the present invention. In step 200, the CPU 12 is provided with a set (T.) of Type C tokens generated
with a seed size (S) via the routine of figure 6a, with neck removal via the routine of figure 7. The seed size S = S,
for example, S = 4 pixels. In step 202, for each Type C token, t. in the set T, the CPU 12 selects a number (for example
50) of potential seeds s, to s,. In our example, each selected seed will be a 4X4 pixel array from within the token region,
the pixels of the array being of approximately equal values (within the noise levels of the recording device).

[0093] In step 204, the CPU 12 grows a new Type C token, utilizing the routines of figures 6a and 7, from each seed
location, s4 to s,, of each token t; in the set T.. The newly grown tokens for each token t; are designated as tokens r4
to rg,. The newly grown tokens r.4 to r,, for each token t, generally overlap the original Type C token t;, as well as one
another.

[0094] In step 206, the CPU 12 operates to merge the newly generated tokens r 4 to r, of each token t., respectively.
The result is a new token R, corresponding to each original token t in the set T... Each new token R, encompasses all
of the regions of the respective overlapping tokens r.4 to r., generated from the corresponding original token t.. The
unions of the regions comprising the respective merged new tokens R, are each a more extensive token than the original
Type C tokens of the set. The resulting merged new tokens R; result in regions of the image file 18, each of a much
broader range of variation between the pixels of the respective token R, than the original Type C token, yet the range
of variation among the constituent pixels will still be relatively smooth. R, is defined as a limited form of Type B token,
Type B4, to indicate a token generated by the first stage (steps 200-206) of the arbitrary boundary removal technique
according to a feature of the present invention.

[0095] In step 208, the CPU 12 stores each of the Type B, tokens generated in steps 202-206 from the set of tokens
T, and proceeds to step 210. Type B,,4 tokens generated via execution of steps 202-206 may overlap significantly. In
step 210, the CPU 12 operates to merge the R, tokens stored in step 208 that overlap each other by a certain percentage
of their respective sizes. For example, a 30% overlap is generally sufficient to provide few, if any, false positive merges
that combine regions containing different materials. The new set of merged tokens still may have overlapping tokens,
for example, previously overlapping tokens that had a less than 30% overlap. After all merges are complete, the CPU
12 proceeds to step 212.

[0096] In step 212, the CPU 12 identifies all pixels that are in more than one token (that is in an overlapping portion
of two or more tokens). Each identified pixel is assigned to the token occupying the largest region of the image. Thus,
all overlapping tokens are modified to eliminate all overlaps.

[0097] In step 214, the CPU 12 (as the Type C tokenization block 35 or the operators block 28) stores the final set of
merged and modified tokens, now designated as Type B, tokens, and then exits the routine. As noted above, the Type
B2 tokens were generated from Type C tokens whether the Type C tokens were generated using N color band values
(RGB in our example) of the pixel or the filter output representation of the pixel, in the event the image was filtered.
[0098] A second exemplary technique according to the present invention, for using Type C tokens to create Type B
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tokens, is adjacent planar token merging. The adjacent planar token merging can be implemented when an image depicts
areas of uniform color, that is for non-textured regions of an image. Initially, a token graph is used to identify tokens that
are near to one another. Figure 9 shows a flow chart for creating a token graph, containing token map information,
according to a feature of the present invention. Each token t, in the set of Type C tokens T, generated through execution
of the routines of figures 6a and 7, is evaluated in terms of a maximum distance D, between tokens defining a
neighboring pair of tokens, t., t,, of the set T, a minimum number of token perimeter pixels, P, in each token of the
neighboring pair of tokens, and a minimum fraction of perimeter pixels, F,, of each token of a neighboring pair of
tokens, required to be within Dy,,.

[0099] In step 300, the CPU 12 selects a Type C token t. in the set of Type C tokens T, and identifies the pixels of
the selected token t, forming the perimeter of the token. In a decision block 302, the CPU 12 determines whether the
number of perimeter pixels is less than P, for example 10 pixels.

[0100] If yes, the CPU 12 proceeds to decision block 304 to determine whether there are any remaining tokens t; in
the set of Type C tokens T. If yes, the CPU 12 returns to step 300, if no, the CPU 12 exits the routine 306.

[0101] If no, the CPU 12 proceeds to step 308. In step 308, the CPU 12 generates a bounding box used as a mask
to surround the selected token t.. The bounding box is dimensioned to be at least D, larger than the selected token
t. in all directions. A known distance transform (for example, as described in P. Felzenszwalb and D. Huttenlocher,
Distance Transforms of Sampled Functions, Cornell Computing and Information Science Technical Report TR2004-1963,
September 2004), is executed to find the distance from each perimeter pixel of the selected token t. to all the pixels in
the surrounding bounding box. The output of the distance transform comprises two maps, each of the same size as the
bounding box, a distance map and a closest pixel map. The distance map includes the Euclidean distance from each
pixel of the bounding box to the nearest perimeter pixel of the selected token t.. The closest pixel map identifies, for
each pixel in the distance map, which perimeter pixel is the closest to it.

[0102] In step 310, the CPU 12 scans the distance map generated in step 308 to identify tokens corresponding to
pixels of the bounding box (from the region map generated via the routine of figure 6a), to identify a token from among
all tokens represented by pixels in the bounding box, that has a number N, of pixels within the distance D, ,,, wherein
N, is greater than P;,, and greater than F,;, * perimeter pixels of the respective token and the average distance
between the respective token and t,, is the lowest of the tokens corresponding to the pixels in the bounding box. If these
conditions are satisfied, the respective token is designated t,, of a possible token pair t., t,, and a link L, is marked active.
[0103] In step 312, the CPU 12 checks to determine whether a reciprocal link L., is also marked active, and when it
is marked active, the CPU 12 marks and stores in the token graph, an indication that the token pair t, t,, is a neighboring
token pair. The reciprocal link refers to the link status in the evaluation of the token designated as t,, in the current
evaluation. If that token has yet to be evaluated, the pair is not designated as a neighboring token pair until the link L,
is verified as active in the subsequent evaluation of the token t,. The CPU 12 then returns to decision block 304 to
determine whether there are any further tokens in the set T...

[0104] Upon completion of the token graph, the CPU 12 utilizes token pair information stored in the graph in the
execution of the routine of figure 10. Figure 10 shows a flow chart for constructing Type B tokens via the adjacent planar
token merging technique, according to a feature of the present invention. In the adjacent planer merging technique, pairs
of tokens are examined to determine wether there is a smooth and coherent change in color values, in a two dimensional
measure, between the tokens of the pair. The color change is examined in terms of a planar representation of each
channel of the color, for example the RGB components of the pixels according to the exemplary embodiments of the
present invention. A smooth change is defined as the condition when a set of planes (one plane per color component)
is a good fit for the pixel values of two neighboring tokens. In summary, neighboring tokens are considered the same
material and a Type B token when the color change in a two-dimensional sense is approximately planar.

[0105] In step 320, the CPU 12 selects a token pair t, t,, from the token graph. In decision block 322, the CPU 12
determines whether the mean color in token t,, is significantly different from the mean color in the token t.. The difference
can be a function of a z-score, a known statistical measurement (see, for example, Abdi, H. (2007), Z-scores, in N.J.
Salkind (Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks, CA: Sage), for example, a z-score greater
than 3.0.

[0106] If the mean colors of the token pair are different, the CPU 12 proceeds to decision block 324 to determine
whether there are any additional token pairs in the token graph. If yes, the CPU 12 returns to step 320. If no, the CPU
12 exits the routine (step 326).

[0107] If the mean colors are within the z-score parameter, the CPU 12 proceeds to step 328. In step 328, the CPU
12 performs a mathematical operation such as, for example, a least median of squares regression (see, for example,
Peter J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association, Vol. 79, No.
388 (Dec., 1984), pp. 871-880) to fit a plane to each color channel of the pixels (in our example RGB) of the token pair
t., t,, as a function of row n and column m (see figure 2), the planes being defined by the equations:
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R=XRn+YRm+ZR G=XGn+YGm+ZG B=XBn+YBm+ZB

wherein parameter values X, Y and C are determined by the least median of squares regression operation of the CPU 12.
[0108] Upon completion of the plane fitting operation, the CPU 12 proceeds to step 330. In step 330, the CPU 12
examines each pixel of each of the tokens of the token pair t., t, to calculate the z-score between each pixel of the
tokens and the planar fit expressed by the equation of the least median of squares regression operation. When at least
a threshold percentage of the pixels of each token of the pair (for example, 80%), are within a maximum z-score (for
example, 0.75), then the neighboring token pair is marked in the token graph as indicating the same material in the
image. After completion of step 330, the CPU 12 returns to decision block 324.

[0109] Upon exiting the routine of figure 10, the CPU 12 examines the token graph for all token pairs indicating the
same material. The CPU 12 can achieve the examination through performance of a known technique such as, for
example, a union find algorithm. (See, for example, Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms
for disjoint set union problems, ACM Computing Surveys, Volume 23, issue 3 (September 1991), pages 319-344). As
asimple example, assume a set of seven Type C tokens T4, Ty, Ty, T4, T, Tg, T7. Assume that the result of the execution
of figure 9, (performance of the adjacent planar analysis), indicates that tokens T, and T, are marked as the same
material, and tokens T4 and T5 are also marked as the same material. Moreover, the results further indicate that tokens
T4 and T5 are marked as the same material, and tokens T and Tg are also marked as the same material. The result of
execution of the union find algorithm would therefore indicate that tokens {T, T,, T} form a first group within the image
consisting of a single material, tokens {T,4, T5, Tg} form a second group within the image consisting of a single material,
and token {T,} forms a third group within the image consisting of a single material. The groups {T4, T,, T3}, {T4, T5, Tg}
and {T,} form three Type B tokens.

[0110] A third exemplary technique according to the present invention, for using Type C tokens to create Type B
tokens, is a local token analysis. A local token approach generates Type C tokens using a window analysis of a scene
depicted in an image file 18. Such tokens are designated as Type C,, tokens. Figure 11 is a flow chart for generating
Type C,, tokens via the local token analysis technique, according to a feature of the present invention.

[0111] Instep400, the CPU 12 places a window of fixed size, for example, a 33x33 pixel array mask, over a preselected
series of scan positions over the image. The window can be a shape other than a square. The scan positions are offset
from one another by a fixed amount, for example ¥> window size, and are arranged, in total, to fully cover the image.
The window area of pixels at each scan position generates a Type C,, token, though not every pixel within the window
at the respective scan position is in the Type C,, token generated at the respective scan position.

[0112] Ateach scan position (step 402), the CPU 12 operates, as a function of the pixels within the window, to fit each
of a set of planes, one corresponding to the intensity of each color channel (for example, RGB), and an RGB line in RGB
space, characterized by a start point |y and an end point |, of the colors within the window. The planar fit provides a
spatial representation of the pixel intensity within the window, and the line fit provides a spectral representation of the
pixels within the window.

[0113] For the planar fit, the planes are defined by the equations:

R=XRn+YRm+ZR G=XGn+YGm+ZG B=XBn+YBm+ZB

wherein parameter values X, Y and C are determined by CPU 12 by executing a mathematical operation such as the
least median of squares regression discussed above, a least-squares estimator, such as singular value decomposition,
or a robust estimator such as RANSAC (see, for example, M. A. Fischler, R. C. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol
24, pp 381-395, 1981).

[0114] For the RGB line fit, the line is defined by:

I(r,g,b) = L(r,g,b) + t(I,(r,g,b) - I;(r,g,b)) wherein the parameter t has a value between 0

wherein the parameter t has a value between 0 and 1, and can be determined by the CPU 12 utilizing any of the
mathematical techniques used to find the planar fit.

[0115] Ateach scan position, after completion of step 402, the CPU 12 operates in step 404 to examine each pixel in
the window in respect of each of the planar fit representation and RGB line representation corresponding to the respective
window scan position. For each pixel, the CPU 12 determines an error factor for the pixelrelative to each of the established
planes and RGB line. The error factor is related to the absolute distance of the pixel to its projection on either from either
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the planar fit or the RGB line fit. The error factor can be a function of the noise present in the recording equipment or
be a percentage of the maximum RGB value within the window, for example 1%. Any pixel distance within the error
factor relative to either the spatial planar fit or the spectral line fit is labeled an inlier for the Type C,, token being generated
at the respective scan position. The CPU 12 also records for the Type C,, token being generated at the respective scan
position, a list of all inlier pixels.

[0116] At each scan position, after completion of step 404, the CPU 12 operates in step 406 to assign a membership
value to each inlier pixel in the window. The membership value can be based upon the distance of the inlier pixel from
either the planar fit or the RGB line fit. In one exemplary embodiment of the present invention, the membership value is
the inverse of the distance used to determine inlier status for the pixel. In a second exemplary embodiment, a zero-
centered Gaussian distribution with a standard deviation is executed to calculate membership values for the inlier pixels.
[0117] After all of the scan positions are processed to generate the Type C,, tokens, one per scan position, the CPU
12 operates to compile and store a token data list (step 408). The token data list contains two lists. A first list lists all of
the pixels in the image file 18, and for each pixel, an indication of each Type C,, token to which it labeled as an inlier
pixel, and the corresponding membership value. A second list lists all of the generated Type C,, tokens, and for each
token an indication of the inlier pixels of the respective token, and the corresponding membership value. After compiling
and storing the token data list, the CPU 12 exits the routine (step 410).

[0118] Figure 12 is a flow chart for constructing Type B tokens from the Type C,, tokens generated via the local token
analysis technique, according to a feature of the present invention. In step 420, the CPU 12 calculates a similarity of
parameters of the spatial planer dimensions and spectral RGB lines of adjacent or overlapping Type C,, tokens generated
through execution of the routine of figure 108. Overlapping and adjacent Type C,, tokens can be defined as tokens
corresponding to scan positions that overlap or are contiguous. A similarity threshold can be set as a percentage of
difference between each of the spatial planer dimensions and spectral RGB lines of two overlapping or adjacent Type
C,, tokens being compared. The percentage can be a function of the noise of, for example, the camera 14 used to record
the scene of the image file 18. All overlapping or adjacent Type C,, token pairs having a calculated similarity within the
similarity threshold are placed on a list.

[0119] In step 422, the CPU 12 sorts the list of overlapping or adjacent Type C,, token pairs having a calculated
similarity within the similarity threshold , in the order of most similar to least similar pairs. In step 424, the CPU 12 merges
similar token pairs, in the order of the sort, and labeling pairs as per degree of similarity. Each merged token pair will
be considered a Type g token. In step 426, the CPU 12 stores the list of Type g tokens, and exits the routine.

[0120] In a further exemplary embodiment of the present invention, the CPU 12 (executing as the operators block 28)
compiles lists of Type B tokens separately generated through each of and/or a combination of one or more of the arbitrary
boundary removal, adjacent planar token merging, and local token analysis techniques. The determination of the com-
bination of techniques used depends in part on whether a particular region of the image was filtered because of texturing
of the image. Since each Type B token generated through the described techniques likely represents a single material
under varying illumination conditions, merging sufficiently overlapping Type B tokens generated through the use of
varying and different techniques, provides a resulting, merged Type B token that represents a more extensive area of
the image comprising a single material, and approaches the extent of a Type A token.

[0121] Sufficiently overlapping can be defined by satisfaction of certain pixel characteristic criteria, such as, forexample:

A) The two Type B tokens have at least n of the original Type C tokens in common, for example, n = 1

B) The two Type B tokens have at least n pixels in common, for example, n = 20

C) The two Type B tokens have at least n% overlap, that is at least n% of the pixels in a first one of the two Type
B tokens are also found in the second one of the two Type B tokens or vice versa, wherein, for example n% = 10%.
D) The percentage of pixels in a smaller one of the two Type B tokens, also found in the larger one of the two Type
B tokens is above a preselected threshold, for example 15%.

E) A preselected combination of criteria A-D.

[0122] Merging of two sufficiently overlapping Type B tokens can be accomplished via a mathematical operation such
as execution of the union find algorithm discussed above. In the case of two overlapping Type B tokens that do not
satisfy the above discussed criteria, the overlapping pixels of the two tokens can be assigned to the larger one of the
two Type B tokens.

[0123] As a result of execution by the Type C tokenization block 35 and/or the operators block 28 (via the CPU 12) of
the token generation and merging techniques according to features of the present invention, an image can be accurately
segmented into tokens representing discrete materials depicted in the scene (Type B tokens) and tokens representing
regions of robust similar color (Type C tokens), thus providing a basis for computational efficiencies, as the token
representations capture spatio-spectral information of a significant number of constituent pixels. The service provider
24 stores all of the Type C and Type B tokens generated through execution of the above described token generation
techniques, along with the relevant token map information, for example, as determined during execution of the adjacent
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planar token merging technique, and cross-references the stored operator results to the associated selected image file
18, for use in any segregation processing of the selected image.

[0124] In our example of a same illumination constraint, the service provider 24 identifies Type C and Type B tokens
as the operators required by the selected constraint. The Type C tokenization block 35 generated the Type C tokens.
The service provider 24 operates the operators block 28 to execute the above described techniques, to generate the
relevant Type B tokens for the image 32, as well as a token map. The constraint builder 26 organizes the generated
token operators according to the exemplary matrix equation, [A] [x] = [b], for input to the solver 30. In the same illumination
constraint, the constraining relationship of the relevant constraint generator software module is that adjacent Type C
tokens, as indicated by the token map information, are lit by the same illumination, unless the adjacent Type C tokens
are part of the same Type B token.

[0125] Each Type C token stored by the service provider 24 is identified by a region ID, and includes a listing of each
constituent pixel by row and column number. Each pixel of a Type C token will be of approximately the same color value,
for example, in terms of RGB values, as all the other constituent pixels of the same Type C token, within the noise level
of the equipment used to record the image. An average of the color values for the constituent pixels of each particular
Type C token can be used to represent the color value for the respective Type C token. Each Type B token is identified
by constituent Type C tokens, and thus can be processed to identify all of its constituent pixels via the respective
constituent Type C tokens.

[0126] Pursuant to a feature of the present invention, a model for image formation reflects the basic concept of an
image as comprising two components, material and illumination. This relationship can be expressed as: | = ML, where
| is the image color, as recorded and stored in the respective image file 18, M the material component of the recorded
image color and L the illumination component of the recorded image color. The | value for each Type C token is therefore
the average color value for the recorded color values of the constituent pixels of the token.

[0127] Thus: log(l) = log (ML) = log (M) + log(L). This can be restated as i= m + /, where irepresents log(l), m represents
log(M) and /represents log(L). In the constraining relationship of the same illumination constraint, in an example where
three Type C tokens, a, b and c, (see figure 13) are adjacent (and not within the same Type B token, (as can be shown
by a comparison of row and column numbers for all constituent pixels)), I, = I, = I.. Since: I, =i, - m,, I, = iy - mp, and
I, = i, - m; these mathematical relationships can be expressed as (1)m, + (-1)my, + (0)m, = (i, - ip), (1)m, + (O)m;, +
(-1)mg= (i, - i;) and (O)m, + (1)my, + (-1)m; = (i, - f,).

[0128] Figure 13 shows a representation of an [A] [x] = [b] matrix equation for the mathematical relationships of the
example of the three adjacent Type C tokens a, b and c¢ described above, as constrained by the same illumination
constraint: the adjacent Type C tokens a, b and ¢ are at the same illumination. In the matrix equation of figure 15, the
various values for the log (1), in the [b] matrix, are known from the average recorded pixel color values for the constituent
pixels of the adjacent Type C tokens a, b and ¢, generated by the Type C tokenization block 35 from the image selected
for segregation. The [A] matrix of 0’s, 1’s and -1s, is defined by the set of equations expressing the selected same
illumination constraint, as described above. The number of rows in the [A] matrix, from top to bottom, corresponds to
the number of actual constraints imposed on the tokens, in this case three, the same illumination between three adjacent
Type C tokens. The number of columns in the [A] matrix, from left to right, corresponds to the number of unknowns to
be solved for, again, in this case, three. Therefore, the values for the material components of each Type C token a, b
and ¢, in the [x] matrix, can be solved for in the matrix equation. It should be noted that each value is actually a vector
of three values corresponding to the RGB color bands of our example.

[0129] Accordingly, the matrix equation of figure 13, as arranged by the constraint builder 26, is input by the constraint
builder 26 to the solver 30 for an optimized solution for the values of the material components of the adjacent Type C
tokens a, b and c of the selected image. As noted above, in the exemplary GUl embodiment of the present invention, a
user selects one of several mathematical techniques for finding the optimal solution to the system of constraint equations,
[A] [x] = [b]. The CPU 12 configures the solver 30 according to the mathematical operation selected by the user.
[0130] Forexample, in a standard least squares solver, the matrix equation is restated as \underset{x} {min}(Ax - b)2.
The solver 30 then executes the least squares operation to determine optimized values for each of m,, m, and m_. The
solver 30 can then proceed to generate and display a material image based upon the optimal m,, m, and m_ values. In
the material image, the m,, m;, and m, values are substituted for the originally recorded RGB values, for each pixel of
the respective tokens. The solver 30 can proceed to also generate an illumination image from the known recorded image
values iy, iy, i, and the determined m,, m;, and m, values, utilizing the model expressed by i=m + [.

[0131] Each of the material and illumination images are displayed on the monitor 20, via, for example, the GUI (see
figure 5) and can be stored by the service provider 24, and cross-referenced to the original image file 18. According to
a feature of the present invention, modifications and/or manipulations are made to one or both the material image and
the illumination image generated by performance of the above described spatio-spectral operator/constraint/solver proc-
ess, as will be described.

[0132] According to a further feature of the present invention, the solver 30 can be configured to introduce factors
including bounds that capture the limits of real world illumination and material phenomena, to keep material/illumination
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values determined by the optimization procedures as solutions, [x], to within physically plausible ranges. This can be
implemented, for example, in an iterative technique to introduce additional inequality constraints on out-of-bounds values
in [x], at each iteration, and executed to resolve towards values within the defined bounds. Thus, the above described
least squares technique can be augmented to include minimum and maximum bounds on individual material estimates
(as expressed by the entries of [x]). Moreover, the entries of [x] can be regularized such that the material estimates are
consistent with a priori knowledge of material properties.

[0133] In an exemplary embodiment of the present invention, the matrices used in the least squares solver to specify
the selected constraints, [A] and [b] are subject to the following bounds, expressed by the problem:

a linear least squares formulation :

a linear least squares formulation : min,. : X, (A,"X’ - 1,)*

subject to:

X 2 a,l

X’ 2 img;

where 1 denotes the vector of all ones, o, the darkest possible material value (for example, a material cannot be darker
than coal), and o,,, the brightest possible material value. The imgj value is the log intensity value at a particular token
J, to provide a constraint based upon the real world observation that a segregated material color cannot be darker than
it appeared in the original image, since illumination can only brighten the apparent color of an observed material.
[0134] In the linear least squares formulation, the unique minimum solution for x* is the material map that minimizes,
in a linear system expressed by AT Ax’ = AT t, the average squared difference between the target material differences
t;and the estimated differences A;Tx'. For example, if the "ith" constraint A; dictates that two tokens a & b are the same
material, AT Ax’ takes the difference between the values of tokens a & b in X’ and computes the distortion from the target
value ;= 0.

[0135] The inequalities expressed by the "subject to" bounds set forth above, form a feasible set of material solutions
X’ which satisfy the real world constraints of possible maximum and minimum material color values. This differs from the
standard, known least squares solution in that x’, if not further constraint by the "subject to" bounds, could take on a
value at a given location of an image (for example, at a particular pixel or token) that violates the real world observations
of reflectance, yet achieves a more optimal solution for the min x’ formulation.

[0136] In the optimization process executed by the solver 30, whenever any tokens have material color values that
violate the "subject to" inequalities, at a particular iteration of the process, additional temporary constraints are added
that pin the material values in violation, to values that satisfy the bounding conditions. Thus, the original matrices [A]
and [b] are augmented with new matrices specifying the new bounding constraints Ay, ,4s @Nd byoyngs (@S @an expression
of the "subject to" bounds) to define a new augmented system of matrix equations [A; A,y yngs] [X] = [, byoungs)- The
augmented system of equations can be solved analogously to the original system, for example, using the known least
squares procedure.

[0137] In accordance with the above described bounded feature of the present invention, additional, temporary con-
straints are added whenever color values violate real world phenomena. A re-solving of the augmented equations can
be repeated, as necessary, starting with the original system AT Ax’ = AT t, each time (i.e. the temporary bounding
constraints need not be carried over between iterations), and iteratively solving augmented systems A'TA’x’ = A'T £ until
the "subject to" bounds are satisfied.

[0138] In accordance with yet another feature of the present invention, an L4, L, objective function provides a regu-
larization of the optimized solution by encoding a preference for a small number of material changes. In effect, the L,
L,, solver includes the a priori belief that material maps should contain a small number of materials in a figure-of-merit.
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In the solver of the system, there is a distinction between the objective function, a formula that assigns a figure-of-merit
to every possible solution, and the algorithm used to find a solution, an optimal value according to a given objective
function. As the problem in our exemplary embodiment is stated as a minimization, min,. : 3 (A;TX' - t)2, the value an
objective function assigns can be characterized as a "cost."

[0139] In our problem, let X’ be a matrix of a number of rows of tokens and a number of columns of color bands, where
x’c denotes the cth column associated with the cth color band. The least squares objective function, in formula, is aug-
mented, as follows:

min, : X, X; (AX¢ - £i) + y Xy max, |ATX

where y|y > 0 governs the trade-off between the cost associated with the least squares term and the L4, L., penalty. The
expression Xy max; |ATX| accumulates the maximum per-channel absolute difference over all the same material
constraints in [A].

[0140] For example, given a same material constraint between tokens a & b, the L4, L, function will only include a
term for a color channel with the largest difference in between x¢, and x¢, over color channel c. In an exemplary
embodiment of the present invention, the optimization procedure, for example as expressed by the objective function
min, : Yo X (ATXC- 62 +y 2kt MaXg |ATx', is a shrinkage technique. That is, a sequence of least squares problems
is solved in a manner wherein, at each round, constraint targets determined to violate the same material constraint are
shrunk. At the end of the sequence, constraints with a value below a given threshold are culled from the constraint
system, and a new least squares solution is computed. It should be noted that bounds such as the "subject to" bounds
discussed above, can be added to the objective function to provide a bounded L, L, solver.

[0141] Figure 14 is a generalized functional block diagram for the service provider 24 and constraint builder 26. To
summarize the above described constraint examples in a general scheme, a selection is made of an image 32, and a
number of constraint generators from a set of constraint generators 1, 2, ...N, (the constraint generator software modules)
for example, by a user, via the GUI. The set of constraint generators 1-N includes the constraints described above, and
any additional constraining relationships developed as a function of spatio-spectral information for an image. The above
described set of constraints is provided as an example. The present invention contemplates any constraining relationship
based upon spatio-spectral operators, that provides a logical deduction regarding material and illumination aspects of
an image, and thus a basis for constructing matrices [A] and [b] to define a set of equations whose optimal solution
captures intrinsic illumination and material components of a given image.

[0142] Likewise, a set of operators 1-M, generated by the Type C tokenization block 35 or the operators block 28,
includes all operators defined in the constraint generator modules 1-N. As shown in figure 14, the service provider 24
provides all of the operators 1-M, as required by the selected constraint generators 1-N and further couples the selected
constraint generators 1-N to a constraint assembly 39 via a logical switch 40 (both configured within the constraint builder
26). In the event any of the operators 1-M for a selected image 32 are not already stored by the service provider 24, the
service provider 24 utilizes the operators block 28 to compute such operators on demand, in the manner described
above. The constraint assembly 39 constructs a separate [A] [x] = [b] matrix for each one of the selected constraint
generators, asafunction ofthe operators and the constraining relationships defined in the respective constraint generators
1-N. In each case, the [A] [X] = [b] matrix is constructed in a similar manner as described above for the same illumination
example.

[0143] Upon completion of the construction of the system of equations [A]; [X] = [b];, for each of the selected constraint
generators, i={1, 2, ...N}, the constraint assembly 39 concatenates the constituent matrices [A];, [b];, from each constraint
generator. Since each of the concatenated equations may contain a different subset of the unknowns, [x], the assembly
is performed such that corresponding columns of individual matrices [A];, that constrain particular unknowns in [x], are
aligned. The concatenated matrices, [A] [x] = [b], are then input to the solver 30, for solution of the unknowns in the
complete [x] vector, pursuant to the selected optimization procedure, for output of intrinsic images 34. The individual
constraints within the concatenated matrices, [A] [X] = [b], can be weighted relative to one another as a function of factors
such as perceived importance of the respective constraint, strength or empirically determined confidence level.

[0144] The above described example of a same illumination constraint utilizes Type C token and Type B token spatio-
spectral operators. These token operators provide an excellent representation of images that include large surface areas
of a single material, such as are often depicted in images including man-made objects. However, in many natural scenes
there are often large areas of highly textured regions, such as sand, grass, stones, foliage, and so on. As noted above,
identification of Type B tokens using Type C tokens, can be difficult in an image texture. According to a further feature
of the present invention, a texton histogram operator provides a mechanism for capturing statistically uniform spatial
variations of textured regions in a manner that is useful in a constraint based optimization, for example, as expressed
by the [A] [X] = [b] matrix equation.
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[0145] Thus, according tothis feature of the presentinvention, rather than generating Type C tokens in textured regions
of an image, from intensity histograms, for use in identifying Type B tokens, as described above, texture tokens are
generated as a species of Type B tokens, for use in a constraint. In an exemplary embodiment of the texton histogram
operator, the operators block 28 converts each pixel of the image (or pixels of those regions of an image identified as
comprising a texture) from the recorded color band representation of the respective image file 18, such as, for example,
RGB color band values, to a two band representation wherein the two bands comprise a texton label and a texton
histogram label. The two band representations for the pixels are then used to identify texture tokens, as will appear.
[0146] A texton label for each pixel is generated through execution of a clustering process. A texture can be charac-
terized by a texture primitive (for example, in a grass texture, a single blade of grass), and the spatial distribution of the
primitive. A texton analysis is an analytical method for characterizing a texture primitive, for example via a clustering
algorithm. Clustering is a process for locating centers of natural groups or clusters in data. In an exemplary embodiment
of the present invention, the data comprises pixel patches selected from among the pixels of an image being segregated
into material and illumination components. For example, 3 X 3 pixel patches are clustered into K different groups, with
each group being assigned a designating number (1,2,3, ...K). The texton label for each pixel of the 3 X 3 array is the
group number of the group to which the respective patch was assigned during the clustering process.

[0147] To expedite execution of a clustering algorithm, random samples of 3 X 3 patches can be selected throughout
the image, or region of the image identified as comprising a texture, for processing in a clustering algorithm. After
execution of the clustering algorithm by the CPU 12 (operating as the operators block 28), each 3 X 3 patch of the image
is assigned the texton label of the closest one of the K group centers identified in the clustering process, as executed
in respect of the selected random samples.

[0148] To advantage, prior to execution of a clustering algorithm, the pixels of the image are subject to an image
intensity normalization. In a clustering process utilizing an intensity-based distance matrix, dark areas of an image may
be placed in a single group, resulting in an under representation of groups for shadowed areas of a textured region of
animage. A normalization of the image provides a more accurate texton representation for texture regions under varying
illumination. A normalized intensity for a pixel can be expressed by:

inorm(nam) = log (i(n:m)/ib(nam»s

where i, om(n,m) is the normalized intensity for a pixel p(n,m), i(n,m) is the intensity for the pixel p(n,m), as recorded in
the image file 18, and i,(n,m) is a blurred or low passed filtered version of the pixel p(n,m). For example, a 10 pixel blur
radius can be used in any standard blurring function.

[0149] Clustering can be executed according to any known clustering algorithm, such as, for example, K means
clustering where there are K clusters or groups S;, i = 1,2, ...K, and u; is the mean point or center point of all the data
points X € S;. In our example, each X comprises a selected 3 X 3 pixel patch arranged as a 9 X 1 vector of the nine
pixels in the patch (27 elements total, including the RGB values of each of the nine pixels of the vector). As noted above,
each mean point p, is assigned a texton label, 1, 2, 3 ...K, that becomes the texton label for any pixel of a 3 X 3 patch
clustered into the group for which the respective mean point is the center.

[0150] According to an exemplary embodiment of the present invention, the CPU 12 executes the algorithm by initially
partitioning the selected 9 X 1 vectors, representing 3 X 3 pixel patches of the image, into K initial groups S;. The CPU
12 then calculates a center point p;, for each group §; utilizing an intensity-based distance matrix. After determining a
center point p;, for each group S;, the CPU 12 associates each 9 X 1 vector to the closest center point p;, changing
groups if necessary. Then the CPU 12 recalculates the center points ;. The CPU 12 executes iterations of the steps of
associating each 9 X 1 vector to the closest center point ;, and recalculating the center points p;, until convergence.
Convergence is when there is no need to change the group for any of the 9 X 1 vectors. At that point, the CPU 12 assigns
the group number for the respective center point p;, as the texton label for the pixels of each vector in that group.
[0151] As noted above, pixels of 3 X 3 patches not selected as samples for clustering are assigned the texton label
of the closest one of the K group centers p,;, identified in the clustering process, as executed in respect of the selected
random samples. A texton label map is stored by the service provider 24, and is coextensive with the pixel array of figure
2. In the texton label map, for each pixel location, there is an indication of the respective texton label.

[0152] Upon completion of the texton label assignment for pixels of the image, the CPU 12 operates to generate a
texton histogram for each pixel to provide a representation of the spatial variation of texton representations within a
textured region of the image. To that end, the CPU 12 accesses the texton label map. At each pixel location within the
texton label map, a pixel patch of, for example, 21 X 21 pixels, is set up around the current location. The 21 X 21 patch
size is far greater than the 3 X 3 patch sized used to generate the texton representations, so as to capture the spatial
variations of the texture. A texton histogram is then generated for the pixel location at the center of the 21 X 21 patch,
in a similar manner as the intensity histogram described above. However, rather than bins based upon color band values,
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in the texton histogram, there is a bin for each texton label value, 1,2, 3 ...K. The count for each bin corresponds to the
number of pixels in the 21 X 21 patch having the texton label value for the respective bin.

[0153] When a texton histogram is generated for each pixel of the texton label map, the CPU 12 executes a second
clustering step. In the second clustering step, the texton histograms are clustered using spectral clustering. Spectral
clustering techniques use a spectrum of a similarity matrix of data of interest, (in our example, the texton histograms)
to reduce the dimensionality for clustering in fewer dimensions. A similarity matrix for a given set of data points A can
be defined as a matrix S where Sij represents a measure of the similarity between points i, j € A. In our example,
eigenvectors of the Laplacian are clustered using a mean shift. The distance metric is a chi-squared distance of the
histograms.

[0154] A texton histogram label (1,2 ...) is assigned to each cluster group defined by the clustering procedure. For
each pixel of the texton label map, the texton histogram label for the cluster group corresponding to a texton histogram
that is nearest the texton histogram for the respective pixel, is assigned to that pixel. Distance is defined as the chi-
squared histogram distance. Upon completion of the assignment of a texton histogram label to each pixel, each pixel is
now represented by a two band, texton label, texton histogram label representation.

[0155] Accordingto afeature ofthe presentinvention, the two band, texton label, texton histogram label representations
for pixels of an image file 18 can be utilized in a constraint for construction of an [A]; [x] = [b]; constituent within the
concatenated matrices, [A] [X] = [b]. For example, it can be assumed that a region of an image wherein contiguous pixels
within the region all have the same two band, texton label, texton histogram label representation, comprises a region of
the same mean material of a texture depicted in the image. Such a region can be referred to as a texture token, a species
of a Type B token. Thus, a constraint can be imposed that all Type C tokens within the same texture token are of the
same mean material. In this constraint, the Type C tokens are the Type C tokens generated from the color band values
of the constituent pixels by the Type C tokenization block 35.

[0156] While the above exemplary embodiment of the present invention has been described with a user selecting
constraint generators and mathematical operations via a GUI, the image segregation processing can be done in other
operating modes, such as automatically, with images, constraint generators and mathematical operations being auto-
matically selected, for example, as a function of image parameters.

[0157] Referring once again to figure 3, after generation of the intrinsic images, (step 1002), including a material image
and an illumination image, the CPU 12 proceeds to step 1004. In step 1004, the CPU 12 performs any number of
preselected operations to modify and/or manipulate one or the other, or both, the material image and the illumination
image, for an improved, higher quality output image.

[0158] Forexample, the CPU 12 can modify the illumination image in an intensity adjustment, for example, an industry
standard dynamic range compression, such as a gamma correction, to provide a more accurately color correct version
of the output image. As noted above, a gamma correction brightens shadows without making them more similar in color
to the color correct unshaded counterparts, and thus distorts the image appearance. By adjusting intensities solely in
respect to the illumination aspects of the image, distortions to the image are minimized. Other modifications to the
illumination image, for improved overall results, can include a color modification, by adjusting RGB values of the pixels
within the illumination image. Shadow manipulations can also be made on the illumination image, to change the patterns
or character of shadows in the image, such as shadow removal, smoothing out of sharp shadows, giving a fuzzy ap-
pearance to the shadows, and so on.

[0159] Similarly, the CPU 12 can modify the material image. According to a feature of the present invention, certain
editing tasks are performed on the material image, such as cut and paste operations, and material color changes. For
example, in an editing with respect to an image of a scene with a lettered sign, taken at a time of day when a strong
shadow is cast across the sign, a user can draw a selection around the sign in a material image, cut and paste the sign
into another material image, and when merged with the illumination image corresponding to the new material image,
form a display of the scene with the sign inserted and with the illumination characteristics of the new image.

[0160] Other modifications and/or manipulations can be made by the CPU 12 in respect of both the material image
and the illumination image. For example, transformations of the geometry of a scene depicted in a current image file 18
can be implemented, in a physically plausible manner, via separate manipulations to each of the material image and
the illumination image. When the geometric transformations are completed in separate operations relative to the intrinsic
images, rather than in respect of the original image, the results are improved because such separate transformation
operations more accurately accommodate the fact that during surface changes of image geometry, an illumination
incident on the surface changes differently than material change across the same surface. Thus, by separately specifying
madifications and manipulations in each of the material and illumination realms of the image, a more realistic and accurate
result can be achieved. Moreover, the modifications can be performed either simultaneously on the material and illumi-
nation images, or in a preselected order, such as when a change in, for example, the illumination image effects the
nature of the change to be made in the material image, the illumination image is modified first.

[0161] In an exemplary embodiment of the present invention, a user selects a region of a scene depicted in an image
file 18, with a known geometry, and further selects a geometric transformation function for the type of manipulation
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desired for the scene. Relative to the illumination image, the user can select a direction for the source of illumination.
The CPU 12 will then operate to project illumination onto the plane defined by the illumination source direction. For a
more accurate shading depiction, the user can select a distinction between direct and ambient illumination, for example,
by utilizing color within a cast shadow as the ambient illumination. To that end, a user can click on a point in shadow of
the selected scene region and a lit point of the region, to specify direct and ambient illumination color.

[0162] Thereafter, the CPU 12 accesses the corresponding intrinsic images generated, as described above. The CPU
12 will operate to modify the illumination image, first by manipulating the surface geometry of the illumination image
according to the geometric transformation function, and then by projecting the illumination onto the modified surface
geometry according to the source direction. Shading and self-shadowing terms can also be incorporated to reflect
changes caused by the new surface geometry of the illumination image. The shading term can be, for example, the
cosine of the angle between the surface normal of the new surface and the illumination source direction. The self-
shadowing term can be, for example, set to the ambient illumination color in regions where the new surface geometry
prevents direct illumination from reaching a given surface point. Separately, the CPU 12 operates to warp, morph or
otherwise manipulate the material image according to the geometric transformation function selected by the user, to
change the surface geometry of the material aspects of the image.

[0163] In step 1006, the CPU 12 merges the intrinsic images, as modified or manipulated in step 1004, according to
the relationship expressed by the formula | = ML, as described above. The result is a modified output image (step 1008).
The quality of the output image is improved due to the independent and separate modification operations in respect of
the individual intrinsic images generated from the original image.

[0164] In the preceding specification, the invention has been described with reference to specific exemplary embod-
iments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto
without departing from the scope of the invention as set forth in the claims that follow. The specification and drawings
are accordingly to be regarded in an illustrative manner rather than a restrictive sense.

Claims
1. An automated, computerized method for processing an image, comprising the steps of:

providing an image file (18) depicting an image, in a computer memory (16); performing an image segregation
operation on the image file (18) to generate a set of intrinsic images (34) including an illumination image and a
material image corresponding to the image;

modifying a preselected one of the set of intrinsic images (34) according to a set of preselected operations; and
merging the modified one of the set of intrinsic images (34) relative to the set of intrinsic images (34) to provide
a modified output image,

characterized in that

the image segregation operation is carried out by

generating spatio-spectral operators, spatio-spectral operators being representations or characteristics of an image
that encompass spatio-spectral information, which is information relevant to contiguous pixels of the image, such
as spectral relationships among contiguous pixels, in terms of color bands, and the spatial extent of the pixel spectral
characteristics, relevant to a characteristic of the image such as a single material depicted in the image or illumination
flux effecting the image, for example spatio-spectral operators being tokens which are connected image regions,
subjecting the spatio-spectral operators to constraints which define constraining spatio-spectral relationships be-
tween the spatio-spectral operators, for input to a solver, wherein each of the constraints is one of an absolute
material color constraint, a same material constraint, or arelative reflectance constraint, wherein an absolute material
color constraint constrains the material at a particular location of the image to be a certain color, a same material
constraint constrains spatio-spectral operators to be of the same material, a relative reflectance constraint constrains
spatio-spectral operators to have a similarity of reflectance characteristics, wherein these constraining spatio-spectral
relationships are expressed as a matrix equation Ax=b, where A is a matrix of values that are to be satisfied by the
definitions of the spatio-spectral operators and the constraining spatio-spectral relationships, b is a matrix of values
observed in the image, and x is a matrix of variables to be solved for, the matrix x representing one of an illumination
or material component of the image corresponding to one of the intrinsic images (34), wherein each row of the matrix
A corresponds to one constraint.

2. The method of claim 1 wherein the set of preselected operations includes an intensity adjustment, a color change,
shadow manipulation, geometric editing, cut and paste editing and combinations thereof.

22



10

15

20

25

30

35

40

45

50

55

EP 2 425 377 B1

The method of claim 1 wherein the step of modifying a preselected one of the set of intrinsic images (34) is carried
out by modifying the illumination image.

The method of claim 1 wherein the step of modifying a preselected one of the set of intrinsic images (34) is carried
out by modifying the material image.

The method of claim 1 wherein the step of modifying a preselected one of the set of intrinsic images (34) is carried
out by modifying both the material image and the illumination image, separately, for an overall modification of the
image.

The method of claim 5 wherein the step of modifying both the material image and the illumination image, separately,
for an overall modification of the image is carried out to perform a geometric editing of the image.

The method of claim 5 wherein the step of modifying both the material image and the illumination image, separately,
for an overall modification of the image is carried out by modifying the material image and the illumination image in

a preselected order.

The method of claim 1 wherein the step of modifying a preselected one of the set of intrinsic images is carried out
by modifying the illumination image in a dynamic range compression.

The method of claim 8 wherein the dynamic range compression is a gamma correction.

10. A computer system (10) which comprises:

a CPU (12); and
a memory (16) storing an image file (18) containing an image;
the CPU (12) arranged and configured to execute a routine to perform the method of claim 1.

Patentanspriiche

1.

Automatisiertes computergesteuertes Verfahren zum Verarbeiten eines Bildes, umfassend die folgenden Schritte:

Bereitstellen einer Bilddatei (18), die ein Bild darstellt, in einem Computerspeicher (16);

Durchfiihren einer Bildtrennungsoperation an der Bilddatei (18) zum Erzeugen eines Satzes von intrinsischen
Bildern (34), umfassend ein Beleuchtungsbild und ein Materialbild, entsprechend dem Bild;

Bearbeiten eines vorausgew&hlten intrinsischen Bildes (34) aus dem Satz von intrinsischen Bildern (34) gemai
einem Satz von vorausgewahlten Operationen; und

Eingliedern des bearbeiteten intrinsischen Bildes (34) aus dem Satz von intrinsischen Bildern (34) relativ zu
dem Satz von intrinsischen Bildern (34) zum Bereitstellen eines bearbeiteten Ausgangsbildes,

dadurch gekennzeichnet, dass

die Bildtrennungsoperation durchgefihrt wird durch

Erzeugen von raumlich-spektralen Operatoren, wobei die raumlich-spektralen Operatoren Darstellungen oder Cha-
rakteristiken eines Bildes sind, die raumlich-spektrale Informationen enthalten, wobei die Informationen fiir die
aneinander angrenzenden Pixel des Bildes, wie z. B. spektrale Beziehungen zwischen aneinander angrenzenden
Pixeln, hinsichtlich Farbbandern und die raumliche Ausdehnung der Spektralcharakteristiken der Pixel, relevant
sind, relevant fiir eine Charakteristik des Bildes, wie z. B. ein einzelnes Material, das in dem Bild dargestellt ist, oder
eines Beleuchtungsflusses, der das Bild beeinflusst, wobei zum Beispiel die réumlich-spektralen Operatoren Token
sind, die verbundene Bildregionen sind,

Auferlegen von Einschrankungen fir die rdumlich-spektralen Operatoren, wobei die Einschrankungen einschrén-
kende raumlich-spektrale Beziehungen zwischen den rdumlich-spektralen Operatoren definieren, zur Eingabe in
einen Loser, wobei jede der Einschrankungen eine Absolute-Materialfarbe-Einschrankung, eine Gleiches-Material-
Einschrankung oder eine Relatives-Reflexionsvermdgen-Einschrankung ist, wobei eine Absolute-Materialfarbe-Ein-
schrankung das Material an einer speziellen Stelle des Bildes dahingehend einschrénkt, dass es von einer bestimm-
ten Farbe sein muss, eine Gleiches-Material-Einschrankung die raumlich-spektralen Operatoren dahingehend ein-
schrankt, dass sie aus dem gleichen Material sein missen, eine Relatives-Reflexionsvermégen-Einschrankung die
raumlich-spektralen Operatoren dahingehend einschrankt, dass sie eine Ahnlichkeit der Reflexionsvermégenscha-
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rakteristiken aufweisen missen, wobei diese einschrankenden raumlich-spektralen Beziehungen als eine Matrix-
gleichung Ax=bausgedriicktwerden, wobei A eine Matrix von Werten ist, die den Definitionen derraumlich-spektralen
Operatoren und den einschrankenden raumlich-spektralen Beziehungen genligen miissen, beine Matrix von Werten
ist, die in dem Bild erfasst werden, und x eine Matrix von Variablen ist, die aufgelést werden milssen, wobei die
Matrix x eine einer Beleuchtungs- oder einer Materialkomponente des Bildes darstellt, das einem der intrinsischen
Bilder (34) entspricht, wobei jede Reihe der Matrix A einer Einschrankung entspricht.

Verfahren nach Anspruch 1, wobei der Satz von vorausgewahlten Operationen eine Intensitétseinstellung, eine
Farbveranderung, eine Schattenmanipulation, eine geometrische Nachbehandlung, eine Ausschneide-und-Einflige-
Nachbehandlung und Kombinationen daraus aufweist.

Verfahren nach Anspruch 1, wobei der Schritt des Bearbeitens eines vorausgewahlten Bildes (34) aus dem Satz
von intrinsischen Bildern (34) durch Bearbeiten des Beleuchtungsbildes durchgefiihrt wird.

Verfahren nach Anspruch 1, wobei der Schritt des Bearbeitens eines vorausgewahlten Bildes (34) aus dem Satz
von intrinsischen Bildern (34) durch Bearbeiten des Materialbildes durchgefiihrt wird.

Verfahren nach Anspruch 1, wobei der Schritt des Bearbeitens eines vorausgewahliten Bildes (34) aus dem Satz
von intrinsischen Bildern (34) durch getrenntes Bearbeiten sowohl des Materialbildes als auch des Beleuchtungs-
bildes fur eine Gesamtbearbeitung des Bildes durchgefiihrt wird.

Verfahren nach Anspruch 5, wobei der Schritt des getrennten Bearbeitens sowohl des Materialbildes als auch des
Beleuchtungsbildes fiir eine Gesamtbearbeitung des Bildes zum Durchfiihren einer geometrischen Nachbehandlung
des Bildes durchgefihrt wird.

Verfahren nach Anspruch 5, wobei der Schritt des getrennten Bearbeitens sowohl des Materialbildes als auch des
Beleuchtungsbildes fiir eine Gesamtbearbeitung des Bildes durch Bearbeiten des Materialbildes und des Beleuch-
tungsbildes in einer vorausgewahlten Reihenfolge durchgefiihrt wird.

Verfahren nach Anspruch 1, wobei der Schritt des Bearbeitens eines vorbestimmten Bildes (34) aus dem Satz von
intrinsischen Bildern (34) durch Bearbeiten des Beleuchtungsbildes in einer Dynamikbereichskompression durch-

gefihrt wird.

Verfahren nach Anspruch 8, wobei die Dynamikbereichskompression eine Gammakorrektur ist.

10. Computersystem (10), umfassend:

eine CPU (12); und

einen Speicher (16) zum Speichern einer Bilddatei (18), die ein Bild enthalt;

wobei die CPU (12) so angeordnet und konfiguriert ist, dass sie eine Routine zum Durchfiihren des Verfahrens
nach Anspruch 1 ausfiihrt.

Revendications

1.

Une méthode automatisée, informatisée de traitement d’'une image comprenant les étapes de:
fourniture d’un fichier image (18) représentant une image, dans une mémoire d’ordinateur (16);

réalisation d’'une opération de ségrégation des images sur le fichier image (18) afin de générer un set
d’'images intrinséques (34) incluant une image d’illumination et une image matérielle correspondant a I'ima-

ge,;

modification d’'une image intrinséque (34) présélectionnée du set d'images intrinséques (34) en respect d'un
set d'opérations présélectionnées; et

fusion de 'image intrinseque (34) présélectionnée du set modifié d'images intrinseques (34) relatif au set d'ima-
ges intrinséques (34) afin de fournir une image de sortie modifiée;
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caractérisée en cela que
I'opération de ségrégation d’'images est effectuée en

générant des opérateurs spatio-spectraux, les opérateurs spatio-spectraux étant des représentations ou des
caractéristiques d’'une image qui comprennent des informations spatio-spectrales, qui sont les informations sur
les pixels contigus de I'image, comme les relations spectrales parmi les pixels contigus, en termes de bandes
de couleurs, et I'étendue spatiale des caractéristiques spectrales des pixels, pertinent pour une caractéristique
de I'image comme une matiére individuelle représentée dans l'image ou le flux d’illumination affectant 'image,
par exemple les opérateurs spatio-spectraux étant des marques qui sont des régions connectées de 'image,
soumettant les opérateurs spatio-spectraux a des contraintes qui définissent les relations de contraintes spatio-
spectrales entre les opérateurs spatio-spectraux, pour information pour un solveur dans lequel chacune des
contraintes est une contrainte de couleur matérielle absolue, une contrainte matérielle similaire ou une contrainte
de réflexion relative, dans laquelle une contrainte de couleur matérielle absolue contraint la matiére dans un
emplacement particulier de I'image a étre d’'une certaine couleur, une contrainte matérielle similaire contraint
des opérateurs spatio-spectraux d’étre de la méme matiére, une contrainte de réflexion relative contraint des
opérateurs spatio-spectraux a a avoir des caractéristiques similaires de réflexion, ces relations de contraintes
spatio-spectrales étant exprimées en tant qu’équation de matrice Ax=b ou A est une matrice de valeurs qui
doivent étre satisfaites par les définitions des opérateurs spatio-spectraux et les relations de contraintes spatio-
spectrales, b est une matrice de valeurs observées dans I'image et x est une matrice de variables devant étre
résolues, la matrice x représentant un composant d’illumination ou un composant de matiere de 'image cor-
respondantal'une des images intrinséques (34), chaque rangée de la matrice A correspondant a une contrainte.

La méthode de la revendication 1 dans laquelle le set d’opérations présélectionnées inclut un réglage d’intensité,
un changement de couleur, une manipulation des ombres, une édition géométrique, une édition copier-coller et des
combinaisons de celles-ci.

La méthode de larevendication 1 dans laquelle I'étape de modification d’une image intrinséque (34) présélectionné
du set d’'images intrinséques (34) est effectuée en modifiant I'image d’illumination.

La méthode de la revendication 1 dans laquelle I'étape de maodification d’une image intrinséque (34) présélectionné
du set d'images intrinséques (34) est effectuée en modifiant 'image matérielle.

La méthode de la revendication 1 dans laquelle I'étape de modification d’une image intrinséque (34) présélectionné
du setd’images intrinséques (34) est effectuée en modifiant 'image matérielle et 'image d’illumination, séparément,
pour une modification générale de I'image.

La méthode de la revendication 5 dans laquelle I'étape de modification de I'image matérielle et de I'image d'illumi-
nation, séparément, pour une modification générale de 'image est effectuée afin de réaliser une édition géométrique
de l'image.

La méthode de la revendication 5 dans laquelle I'étape de maodification de I'image matérielle et de I'image d’illumi-
nation, séparément, pour une modification générale de I'image est effectuée en modifiant 'image matérielle et
I'image d’illumination dans un ordre présélectionné.

La méthode de la revendication 1 dans laquelle I'étape de modification d’une image intrinséque (34) présélectionné
du set présélectionné d’'images intrinséques (34) est effectuée en modifiant 'image d’illumination dans un compres-

sion de la gamme dynamique.

La méthode de la revendication 8 dans laquelle la compression de lagamme dynamigue est une correction gamma.

10. Un systéme informatique (10) qui comprend:

une CPU (12); et
une mémoire (16) qui stocke un fichier d'image (18) contenant une image;
la CPU (12) préparée et configurée pour exécuter une routine afin d’effectuer la méthode de la revendication 1.
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Pixel Array for Storing Image Data
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