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Description

[0001] A challenge in the utilization of computers to accurately and correctly perform operations relating to images is
the development of algorithms that truly reflect and represent physical phenomena occurring in the visual world. For
example, the ability of a computer to correctly and accurately distinguish between a shadow and a material object edge
within an image has been a persistent challenge to scientists. An early and conventional approach to object edge
detection involves an analysis of brightness boundaries in an image. In the analysis it is assumed that a boundary caused
by a material object will be sharp, while a boundary caused by a shadow will be soft or gradual due to the penumbra
effect of shadows. While this approach can be implemented by algorithms that can be accurately executed by a computer,
the results will often be incorrect. In the real world there are many instances wherein shadows form sharp boundaries,
and conversely, material object edges form soft boundaries. Thus, when utilizing conventional techniques for shadow
and object edge recognition, there are significant possibilities for false positives and false negatives for shadow recog-
nition. That is, for example, a material edge that imitates a shadow and is thus identified incorrectly by a computer as a
shadow or a sharp shadow boundary that is incorrectly interpreted as an object boundary. Accordingly, there is a
persistent need for the development of accurate and correct techniques that can be utilized in the operation of computers
relating to images, to, for example, identify material and illumination characteristics of the image.
[0002] The US patent application US 2008/0089576 A1 discusses various methods for segregating an image into a
material image and an illumination image. To achieve a more reliable segregation, depth information for the scene
depicted in the image is taken into account in each of the methods discussed.
[0003] The article "A common set of perceptual observables for grouping, figure-ground discrimination, and texture
classification" by Collins R et al., Transactions on pattern analysis and machine intelligence, IEEE, Piscataway, USA,
vol. 25, no. 4, 1. April 2003, pages 458 - 474, discusses the analysis of textures. An image segregation as in the above
cited US 2008/0089576 A1 is not involved. The present invention provides a method and system comprising image
processing techniques that utilize spatio-spectral information relevant to an image to accurately and correctly identify
illumination and material aspects of the image.
[0004] In an exemplary embodiment of the present invention, an automated, computerized method according to claim
1 is provided for processing an image.
[0005] In accordance with yet further embodiments of the present invention, computer systems are provided, which
include one or more computers configured (e.g., programmed) to perform the method described above. In accordance
with other embodiments of the present invention, computer readable media are provided which have stored thereon
computer executable process steps operable to control a computer(s) to implement the embodiments described above.
The automated, computerized methods can be performed by a digital computer, analog computer, optical sensor, state
machine, sequencer or any device or apparatus that can be designed or programmed to carry out the steps of the
methods of the present invention.

Figure 1 is a block diagram of a computer system arranged and configured to perform operations related to images.

Figure 2a shows an n X m pixel array image file for an image stored in the computer system of figure 1.

Figure 2b is an 11 X 11 pixel array formed from the upper left hand corner of the image file of figure 2a, for use in
the generation of a histogram, according to a feature of the present invention.

Figure 2c shows a diagram of the histogram generated from the 11 X 11 pixel array of figure 2b.

Figure 3 is a functional block diagram of an image segregation system architecture, implemented in the computer
system of figure 1, according to a feature of the present invention.

Figure 4 shows a graphical user interface for use in connection with an implementation of the image segregation
system architecture feature of the present invention.

Figure 5a is a flow chart for identifying Type C token regions in the image file of figure 2a, according to a feature of
the present invention.

Figure 5b is an original image used as an example in the identification of Type C tokens.

Figure 5c shows Type C token regions in the image of figure 5b.

Figure 5d shows Type B tokens, generated from the Type C tokens of figure 5c, according to a feature of the present
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invention.

Figure 6 is a flow chart for a routine to test Type C tokens identified by the routine of the flow chart of figure 5a,
according to a feature of the present invention.

Figure 7 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technique, according to a
feature of the present invention.

Figure 8 is a flow chart for creating a token graph, containing token map information, according to a feature of the
present invention.

Figure 9 is a flow chart for constructing Type B tokens via an adjacent planar token merging technique, according
to a feature of the present invention.

Figure 10 is a flow chart for generating Type C tokens via a local token analysis technique, according to a feature
of the present invention.

Figure 11 is a flow chart for constructing Type B tokens from Type C tokens generated via the local token analysis
technique of figure 10, according to a feature of the present invention.

Figure 12a shows intensity profiles and corresponding first derivative and second derivative profiles for each of a
material edge, a single material with a shadow over a portion of the material and a single material under constant
illumination.

Figure 12b is an example of a LoG filter mask.

Figure 12c is an illustration of a 7 X 7 pixel patch within the n X m pixel array image file of figure 2a.

Figure 13 is a flow chart for identifying regions of uniform material reflectance within the n X m pixel array image
file of figure 2a, according to a feature of the present invention.

Figure 14 is a flow chart for combining results from executions of the routine of figure 13 with differing parameters,
according to a feature of the present invention.

Figure 15 is a representation of an [A] [x] = [b] matrix relationship according to a feature of the present invention.

Figure 16a shows a representation of a boundary between two Type B tokens of figure 5d, according to a feature
of the present invention.

Figure 16b shows another representation of a boundary between two Type B tokens of figure 3d, according to a
feature of the present invention.

Figure 16c shows yet another representation of a boundary between two Type B tokens of figure 3d, according to
a feature of the present invention.

Figure 17 is a functional block diagram for a service provider component for use in the image segregation system
architecture of figure 3.

Figure 18 is a block diagram for a test bed for testing an image transform method such as the image segregation
system architecture of figure 3.

[0006] Referring now to the drawings, and initially to figure 1, there is shown a block diagram of a computer system
10 arranged and configured to perform operations related to images. A CPU 12 is coupled to a device such as, for
example, a digital camera 14 via, for example, a USB port. The digital camera 14 operates to download images stored
locally on the camera 14, to the CPU 12. The CPU 12 stores the downloaded images in a memory 16 as image files 18.
The image files 18 can be accessed by the CPU 12 for display on a monitor 20, or for print out on a printer 22.
[0007] Alternatively, the CPU 12 can be implemented as a microprocessor embedded in a device such as, for example,
the digital camera 14 or a robot. The CPU 12 can also be equipped with a real time operating system for real time
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operations related to images, in connection with, for example, a robotic operation or an interactive operation with a user.
[0008] As shown in figure 2a, each image file 18 comprises an n X m pixel array. Each pixel, p, is a picture element
corresponding to a discrete portion of the overall image. All of the pixels together define the image represented by the
image file 18. Each pixel comprises a digital value corresponding to a set of color bands, for example, red, green and
blue color components (RGB) of the picture element. The present invention is applicable to any multi-band image, where
each band corresponds to a piece of the electro-magnetic spectrum. The pixel array includes n rows of m columns each,
starting with the pixel p (1,1) and ending with the pixel p(n, m). When displaying or printing an image, the CPU 12 retrieves
the corresponding image file 18 from the memory 16, and operates the monitor 20 or printer 22, as the case may be,
as a function of the digital values of the pixels in the image file 18, as is generally known.
[0009] According to a feature of the present invention, in an image process, the CPU 12 operates to analyze and
process information, for example, the RGB values of the pixels of an image stored in an image file 18, to achieve various
objectives, such as, for example, a segregation of illumination and material aspects of a scene depicted in an image of
the image file 18 to provide an intrinsic image. The intrinsic image can comprise a material image and/or an illumination
image corresponding to the original image, for improved processing in such applications as computer vision. A funda-
mental observation underlying a basic discovery of the present invention, is that an image comprises two components,
material and illumination. All changes in an image are caused by one or the other of these components. Spatio-spectral
information is information relevant to contiguous pixels of an image depicted in an image file 18, such as spectral
relationships among contiguous pixels, in terms of color bands, for example RGB values of the pixels, and the spatial
extent of the pixel spectral characteristics relevant to a characteristic of the image, such as, for example, a single material
depicted in the image or illumination flux effecting the image.
[0010] What is visible to the human eye upon display of a stored image file 18 by the computer system 10, is the pixel
color values caused by the interaction between specular and body reflection properties of material objects in, for example,
a scene photographed by the digital camera 14 and illumination flux present at the time the photograph was taken. The
illumination flux comprises an ambient illuminant and an incident illuminant. The incident illuminant is light that causes
a shadow and is found outside a shadow perimeter. The ambient illuminant is light present on both the bright and dark
sides of a shadow, but is more perceptible within the dark region. Pursuant to a feature of the present invention, the
computer system 10 can be operated to differentiate between material aspects of the image such as, for example, object
edges, and illumination flux through recognition of a spectral shift caused by the interplay between the incident illuminant
and the ambient illuminant in the illumination flux.
[0011] When one of material and illumination is known in an image, the other can be readily deduced. The spectra for
the incident illuminant and the ambient illuminant can be different from one another. Thus, a spectral shift is caused by
a shadow, i.e., a decrease of the intensity of the incident illuminant. Pursuant to a feature of the present invention,
spectral shift phenomena is captured in spatio-spectral information. The spatio-spectral information includes a spectral
ratio: a ratio based upon a difference in color or intensities between two areas of a scene depicted in an image, which
may be caused by different materials (an object edge), an illumination change (illumination boundary) or both. In a
preferred embodiment of the present invention, the spectral ratio equals Dark/Bright-Dark, where Dark is the color band
values (e.g. RGB color values) at a point at an illumination boundary, in a shadowed region of the image, and Bright is
the color band values at a point on the illuminated side of the same illumination boundary.
[0012] Inasmuch as an illumination boundary is caused by the interplay between the incident illuminant and the ambient
illuminant, spectral ratios throughout the image that are associated with illumination change, should be consistently and
approximately equal, regardless of the color of the bright side or the material object characteristics of the boundary. A
spectral ratio corresponding to an illumination boundary can be designated as a characteristic illuminant ratio for the
image.
[0013] According to a further feature of the present invention, spatio-spectral operators are generated to facilitate a
process for the segregation of illumination and material aspects of a scene depicted in an image file 18. Spatio-spectral
operators comprise representations or characteristics of an image that encompass spatio-spectral information usable
in the processing of material and illumination aspects of an image. The spatio-spectral operators are subject to constraints
that define constraining spatio-spectral relationships between the operators, for input to a solver. The solver includes a
mathematical processing engine that operates to obtain an optimized solution for the generation of an intrinsic image,
such as a material image and/or an illumination image derived from the original image stored in an image file 18, as a
function of the constraining relationships between the spatio-spectral operators.
[0014] Spatio-spectral operators include, for example, tokens, token map information, log chromaticity representation
values, X-junctions, BIDR model representations, a boundary representation, and a texton histogram based pixel rep-
resentation.
[0015] Pursuant to a feature of the present invention, a token is a connected region of an image wherein the pixels of
the region are related to one another in a manner relevant to identification of image features and characteristics such
as identification of materials and illumination. The use of tokens recognizes the fact that a particular set of material/illu-
mination/geometric characteristics of an image extends beyond a single pixel, and therefore, while the image processing
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described herein can be done on a pixel level, tokens expedite a more efficient processing of image properties. The
pixels of a token can be related in terms of either homogeneous factors, such as, for example, close correlation of color
values among the pixels, or nonhomogeneous factors, such as, for example, differing color values related geometrically
in a color space such as RGB space, commonly referred to as a texture. Exemplary embodiments of the present invention
provide methods and systems to identify various types of homogeneous or nonhomogeneous tokens for improved
processing of image files. The present invention utilizes spatio-spectral information relevant to contiguous pixels of an
image depicted in an image file 18 to identify token regions.
[0016] According to one exemplary embodiment of the present invention, homogeneous tokens are each classified
as either a Type A token, a Type B token or a Type C token. A Type A token is a connected image region comprising
contiguous pixels that represent the largest possible region of the image encompassing a single material in the scene.
A Type B token is a connected image region comprising contiguous pixels that represent a region of the image encom-
passing a single material in the scene, though not necessarily the maximal region corresponding to that material. A Type
C token comprises a connected image region of similar image properties among the contiguous pixels of the token, for
example, similar color and intensity, where similarity is defined with respect to a noise model for the imaging system
used to record the image.
[0017] A linear token is a nonhomogeneous token comprising a connected region of the image wherein adjacent pixels
of the region have differing color measurement values that fall within a cylinder in RGB space, from a dark end (in
shadow) to a bright end (lit end), along a positive slope. The cylinder configuration is predicted by a bi-illuminant dichro-
matic reflection model (BIDR model), according to a feature of the present invention, when the color change is due to
an illumination change forming a shadow (i.e. a decrease in the intensity of the incident illuminant as the interplay
between the incident or direct illuminant and the ambient illuminant in the illumination field) over a single material of a
scene depicted in the image.
[0018] For purposes of describing, identifying and using linear tokens, the BIDR model can be stated as: I(x, y, z, θ,
ϕ, λ) = cb (λ) Id (λ) γb + Ma (λ) cb (λ), where: I(x, y, z, θ, ϕ, λ) is the radiance of a surface point at (x, y, z) in the direction
θ, ϕ for the wavelength λ, cb (λ) is the geometry independent body reflectance of a surface for the wavelength λ, Id (λ)
is the incident illuminant for the wavelength λ. γb is the product of a shadow factor sx, y, z and a geometric factor mb
(θi), and Ma (λ) is the integral of the ambient illuminant and geometric body reflectance over a hemisphere, excluding
the incident illuminant. For more detailed information on the BIDR model, reference should be made to U. S. Application
Serial No. 11/341,751, filed January 27, 2006, entitled: "Bi-illuminant Dichromatic Reflection Model For Image Manipu-
lation," published as US 2007/0176940 on August 2, 2007.
[0019] Token map information indicates locations of tokens within an image, relative to one another. The map infor-
mation is used to identify neighboring tokens for performing an analysis of token neighbor relationships relevant to
constraining spatio-spectral relationships between tokens, for input to the solver.
[0020] Log chromaticity representation values provide illumination invariant values for pixels of the image. Logarithmic
values of the color band values of the image pixels are plotted on a log-color space graph. The logarithmic values are
then projected to a log-chromaticity projection plane oriented as a function of the BIDR model. The chromaticity plane
values are substituted for the color band values (for example, RGB values) of each pixel. For more detailed information
on log chromaticity representation values, reference should be made to U. S. Application Serial No. 11/403,719, filed
April 13, 2006, entitled: "Method And System For Separating Illumination And Reflectance Using a Log Color Space,"
published as US 2007/0242878 on October 18, 2007.
[0021] An X-junction is an area of an image where a material edge and an illumination boundary cross one another.
An X-junction is an optimal location for an accurate analysis of material and illumination aspects of an image.
[0022] A boundary representation is an arrangement of pixels, on each side of a boundary, formed by, for example,
adjacent Type B tokens. The arrangement is used to facilitate an analysis of the boundary to classify the boundary as
a material boundary on a smooth surface (as opposed to another type of boundary, for example, an illumination edge,
depth boundary or simultaneous illumination and material change). The pixel representation is configured to provide
samples of pixels within each of the Type B tokens forming the boundary. The pixels of the samples are subject to spatio-
spectral analysis, and the results are compared to determine the likelihood that the respective boundary corresponds
to a material change.
[0023] A texton is a homogeneous representation for a region of an image that comprises a texture. Image texture
can be defined as a function of spatial variation in pixel intensities. Image texture patterns are frequently the result of
physical or reflective properties of the image surface. Commonly, an image texture is associated with spatial homogeneity
and typically includes repeated structures, often with some random variation (e.g., random positions, orientations or
colors). Image textures are also often characterized by certain visual properties such as regularity, coarseness, contrast
and directionality. An example of image texture is the image of a zebra skin surface as it appears to be spatially homog-
enous and seems to contain variations of color intensities which form certain repeated patterns. Some image textures
can be defined by geometric characteristics, such as stripes or spots. A texton based operator transforms patterns of
differing reflectance caused by a textured material into a homogeneous representation that captures the spectral and
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spatial characteristics of the textured region in the image.
[0024] Constraints comprise, for example, an anchor constraint, a same illumination constraint, a smooth illumination
constraint, a Type B token constraint, a Linear token constraint, a BIDR enforcement constraint, a same texton histogram
constraint, a log chromaticity similarity constraint, an X junction constraint, and a boundary representation constraint.
Each constraint is configured as a constraint generator software module that defines the spatio-spectral operators utilized
by the respective constraint and provides an expression of the constraining relationship imposed upon the constituent
operators.
[0025] An anchor constraint utilizes a number of brightest/largest Type C tokens in an image. The constraining rela-
tionship is that the material of the selected brightest/largest Type C tokens is constrained to be an absolute value for
the color/brightness observed in the image. The constraint anchors a material map for the image at an absolute brightness
to avoid relative brightness constraints.
[0026] A same illumination constraint utilizes Type C tokens and Type B tokens identified in an image and token map
information. The constraining relationship is that adjacent Type C tokens, as indicted by the token map information, are
at the same illumination, unless the adjacent Type C tokens are part of the same Type B token. The term "same" in
connection with the term "illumination"is used to mean an average value with respect to a noise model for the imaging
system used to record the image. This constrains any observed differences in appearance between adjacent Type C
tokens, that are not part of the same Type B token, to be a material change, as will appear.
[0027] A smooth illumination constraint is similar to the same illumination constraint. However, rather than constraining
all pixels of adjacent Type C tokens to be of the same illumination, as in the same illumination constraint, in the smooth
illumination constraint, the constraint is based upon the average illumination of the pixels near a shared boundary
between adjacent Type C tokens. This constrains the illumination field to be somewhat smooth, as opposed to piecewise
constant (the same, as defined above) throughout a token.
[0028] A Type B token constraint also utilizes Type C tokens and Type B tokens. However, the constraining relationship
is that all Type C tokens that are part of the same Type B token are constrained to be of the same material. This constraint
enforces the definition of a Type B token, that is, a connected image region comprising contiguous pixels that represent
a region of the image encompassing a single material in the scene, though not necessarily the maximal region corre-
sponding to that material. Thus, all Type C tokens that lie within the same Type B token are by the definition imposed
upon Type B tokens, of the same material, though not necessarily of the same illumination. The Type C tokens are
therefore constrained to correspond to observed differences in appearance that are caused by varying illumination.
[0029] Accordingly, the Type B token constraint is complementary to the same and smooth illumination constraints,
which, as opposed to illumination change, constrain observed differences to correspond to material change, as described
above. This is due to the fact that in each of the same and smooth illumination constraints, Type C tokens that are
adjacent and not part of the same Type B token, are constrained to the same illumination. These Type C tokens should
comprise different materials, since by the constraint, they are not in the same Type B token and therefore, by the definition
of Type B tokens enforced by the constraint, do not encompass a single material, so illumination should be a constant,
and any observed difference is considered as attributable to a material change.
[0030] To summarize, pursuant to a feature of the present invention, the Type C and Type B token spatio-spectral
operators are defined to provide characteristics of an image that enable segregation of illumination and material. Type
C tokens each comprise a connected image region of similar image properties, for example similar color, as recorded
and stored in an image file 18. Thus, adjacent Type C tokens indicate some form of change in the image or else they
would form the same Type C token. Type B tokens encompass a single material. The complementary constraints of the
same/smooth illumination constraints and the Type B token constraint enforce relationships between the tokens that
indicate either a material change or an illumination change.
[0031] If the adjacent Type C tokens are within the same type B token, as in the Type B token constraint, the differences
between them should correspond to illumination change due to the same material property of the common Type B token.
If the adjacent Type C tokens are not within the same Type B token, as in the same/smooth illumination constraints, the
difference between them should then correspond to a material change since they are not both defined by a common,
single material Type B token.
[0032] A Linear token constraint utilizes Type C tokens and Linear tokens. The constraining relationship is that a
difference between two Type C tokens, spaced by a Linear token, approximately equals a characteristic illuminant
spectral ratio for the image. As defined, a Linear token follows a cylinder configuration along a positive slope, through
color space. The BIDR model predicts that the positive slope equals a characteristic illuminant spectra! ratio for the
image. Thus, the color difference between two Type C tokens, one at each of the dark end and bright end of a Linear
token, should reflect the value of the respective characteristic illuminant spectral ratio for the image.
[0033] A BIDR enforcement constraint utilizes Type C tokens and a BIDR model defined normal vector for the log-
chromaticity projection plane. The constraining relationship is that the illumination for all Type C tokens in a local patch
of the image forms a set of parallel lines in log-color space, the orientation of the parallel lines being defined by the BIDR
model defined normal vector. The constraint therefore enforces the illumination field present in the image to explicitly fit



EP 2 356 614 B1

7

5

10

15

20

25

30

35

40

45

50

55

the BIDR model prediction for the illumination.
[0034] Thus, each of the Linear token constraint and the BIDR enforcement constraint utilize BIDR model predictions
as a basis to segregate illumination and material aspects of an image. The BIDR model predicts a color change in an
image when the color change is due to an illumination change forming a shadow (i.e. a decrease in the intensity of the
incident illuminant as the interplay between the incident or direct illuminant and the ambient illuminant in the illumination
field) over a single material of a scene depicted in the image. The color change prediction of the BIDR model accurately
constrains all color band variations among Type C tokens to illumination field effects occurring in an image by operating
as a function of the interplay between the spectral variations occurring between incident illuminant and ambient illuminant
components of the illumination field. Thus, BIDR model based constraints couple all color band variations into one
integral constraining relationship.
[0035] A same texton histogram constraint utilizes Type C tokens and texton histogram operators identified for texture
regions within an image. A texton analysis is utilized wherein each pixel of the image (or pixels of those regions of an
image identified as comprising a texture) from the recorded color band representation of the respective image file 18,
such as, for example, RGB color band values, is converted to a two band representation wherein the two bands comprise
a texton label and a texton histogram label. The two band representations are then used to identify texture tokens, as
will be described below. A constraint can be imposed that all Type C tokens within the same texture token are of the
same mean material.
[0036] A log chromaticity similarity constraint utilizes Type C tokens and log chromaticity representation values. The
constraining relationship is that those Type C tokens having pixels with similar log chromaticity representation values
are constrained to a same color value, with observed differences being attributed to variations in the illumination field.
[0037] An X-junction constraint utilizes Type C tokens and X-junction operators. As noted above, an X-junction is an
area of an image where a material edge and an illumination boundary cross one another. X-junctions are typically
identified by four Type C tokens, two pairs of same material Type C tokens forming the material edge, with each same
material pair including an illumination boundary dividing the respective same material into lit and shadowed pairs of
Type C tokens. The constraining relationship: 1) a Type B token constraint is imposed between each same material pair
of Type C tokens forming the X-junction (those with an illumination boundary between them), and 2) a same illumination
constraint is imposed between each pair of Type C tokens forming the material edge of the X-junction. For a more
detailed description of X-junctions and the relationships of constituent tokens, reference should be made to U. S. Appli-
cation Serial No. 11/341,742, filed January 27, 2006, entitled: "Method And System For Identifying Illumination Flux In
An Image," published as US 2006/0177149 on August 10, 2006.
[0038] A boundary representation constraint is defined by a standard ratio constraint. The analysis performed on a
boundary representation, when indicating a material change, provides an estimate of the ratio of colors between two
adjacent regions defined by the boundary, for example, the adjacent Type B tokens, even when the illumination varies
over the regions. The constraint states that the ratio of the colors of two adjacent regions is X. The boundary representation
analysis is executed at the level of Type B tokens, to classify a boundary as being caused by a material change, then
propagated down to the level of the constituent Type C tokens. The constraint states that all adjacent pairs of Type C
tokens along the boundary, (one Type C token on each side of the boundary, and all of the Type C tokens being within
the Type B tokens forming the respective boundary), have colors that satisfy the ratio X, as indicated by the boundary
representation analysis.
[0039] According to a preferred embodiment of the present invention, each of the above described constraints can be
classified into one of three basic types of constraints, an absolute material color constraint, a same material constraint
and a relative reflectance constraint. The absolute material constraint constrains the material at a particular location of
an image to be a certain color, as implemented in, for example, the anchor constraint. The same material constraint
constrains operators relevant to an image (for example, two pixels or Type C tokens) to be of the same material. The
same material type of constraint can be implemented in, for example, Type B, X-junction, log chromaticity similarity,
same texton histogram and linear token constraints. The relative reflectance constraint constrains operators relevant to
an image (for example, two pixels or Type C tokens) to have a similarity of reflectance characteristics, such as defined
by smooth illumination and same illumination constraints, and which can be specified by X-junction, and boundary
representation constraints.
[0040] An exemplary solver according to a feature of the present invention comprises a mathematical processing
engine for executing an optimizing function, for example, optimization of results in an equation expressed by : [A] [x] =
[b], where [A] is a matrix of values that are to be satisfied by (and therefore, taken as solved for by) the definitions of the
operator(s) and the constraining relationship(s) for the operator(s), as indicated by selected constraint(s), [x] is a matrix
of variables for which the equation is finding an optimal solution, for example, one of an illumination or material component
of an image component, for example, a pixel or token, and [b] is a matrix of values observed in an image selected for
processing, for example, the recorded values for the RGB color bands of each pixel of an image file 18. The optimizing
equation can be implemented in a mathematical optimizing function selected from a set of known optimization solvers
such as, for example, known convex optimization operations such as a least squares solver, or a preconditioned conjugate
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gradient solver.
[0041] According to a further feature of the present invention, factors including bounds, are introduced in a solver
operation, in addition to constraining relationships, as a function of real world illumination and material phenomena, to
keep material/illumination values within physically plausible ranges, such as a limit1, limit infinity solver (L1, L∞), a
bounded least squares solver, or a bounded L1, L∞ solver, as will be described below.
[0042] Figure 3 shows a functional block diagram of an image segregation system architecture, implemented in, for
example, the computer system of figure 1, according to a feature of the present invention. Alternatively, the functional
blocks of figure 3 can be implemented in a dedicated hardware circuit arranged to perform the functionality of the blocks
of figure 3. An image 32 (as depicted in an image file 18) is input to a preprocessing block 33. The preprocessing block
33 can perform such functions as correction of chromatic aberration in the image 32, combining multiple images to
provide a high dynamic range image, linearize pixel data for the image, and so on, for an image optimized for processing.
The pre-processed image is then input to a Type C tokenization block 35 which operates to identify Type C tokens in
the pre-processed image, in the manner described below. Type C tokens are common to many of the constraints utilized
in exemplary embodiments of the present invention, thus, an initial identification of Type C tokens for an input image 32
expedites further processing.
[0043] In an exemplary embodiment of the present invention, the CPU 12 executes code to implement both the
preprocessing block 33 and the Type C tokenization block 35, as well as a service provider 24, that functions as a central
agent and caching structure (configured in the memory 16), to handle an image for processing according to the teachings
of the present invention. The service provider 24 receives and stores the pre-processed image and related Type C token
information from the Type C tokenization block 35, and is coupled to an operators block 28 (executed by the CPU 12)
arranged to generate any other operators for the image required by selected constraints, as will appear. The service
provider 24 is also coupled to a global features extraction input 29. The global features extraction input 29 can be used
to provide the system with information relevant to an image being processed, such as an indication of light source when
the image was taken (sunlight, fluorescent light, incandescent light), time of day, location, domain knowledge, such as
information relevant to the nature of the image, such as interior, exterior, buildings, lawns with green grass, trees with
leaves in bloom, etc., and any other parameters relevant to image processing. The service provider 24 stores the global
features extraction input 29 with a related input image 32.
[0044] A constraint builder 26 is coupled to the service provider 24. The constraint builder 26 uses a constraint generator
library (configured within the memory 16) that stores the constraint generator software modules for the various constraints
described above. The service provider 24 and constraint builder 26 operate to arrange spatio-spectral operators relevant
to the pre-processed image, according to selected ones of the constraint generator software modules, in for example,
the [A] [x] = [b] matrix equation.
[0045] A solver 30 (executed by the CPU 12) is coupled to the constraint builder 26, and implements an optimization
operation, as described above, for an optimal solution for the [A] [x] = [b] matrix equation, for use in generating intrinsic
images from the pre-processed image. The solver 30 is also coupled to a post-processing block 36 (executed by the
CPU 12) for certain post-processing operations. The post-processing operations can include, for example, monotonicity
maintenance. In monotonicity maintenance, if two large regions exhibit a linear transition in the input image 32, the
transition should remain a linear transition in the output intrinsic image 34. Post-processing can also include illumination
propagation, that serves to fill in holes left by the solver 30, illumination-map based white balancing and other filtering,
smoothing processes. The post-processing block 36 outputs intrinsic images 34.
[0046] Referring now to figure 4, there is shown a graphical user interface (GUI) for use in connection with an exemplary
implementation of the image segregation system architecture feature of the present invention. The GUI of figure 4 is
displayed on the monitor 20 of the computer system 10 by the service provider 24 for a user to select a desired image
segregation operation. The upper left hand corner of the GUI indicates Open Image, Crop Image, Show Parameters,
and Segregate selection indicators. A user can move and click a cursor on a desired selector indicator. The Open Image
indicator lists all image files 18 currently stored in the memory 16 and enables the user to select an image for processing.
The selected image is input 32 (see figure 3) to the service provider 24 (via the preprocessing block and the Type C
tokenization block 35) which operates to display the selected image at the upper center of the monitor 20.
[0047] A material image derived by operation of the exemplary segregation system from the selected image is output
34 (see figure 3) after execution of the image segregation processing by the solver 30 and displayed at the lower right
hand of the monitor 20 (figure 4). The derived illumination image is displayed at the lower right hand of the monitor 20.
[0048] According to a feature of the present invention, the Crop Image selector permits a user to crop a selected image
so as to process a portion of the overall image. The Show Parameter selector displays parameters related to the selected
image file 18. Parameters for each image file 18 can be stored in a parameter data file associated with a corresponding
image file 18, and include any parameters relevant to the processing of the image depicted in the associated image file
18, for example the global features extraction input 29. Parameters can include any data relevant to image processing
such as, for example, any variable for pixel analysis by the CPU 12, as for example, in the generation of spatio-spectral
operators, and domain knowledge, such as information relevant to the nature of the image, such as interior, exterior,
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buildings, lawns with green grass, trees with leaves in bloom, etc.
[0049] Below the selection indicators is a list of each of the optimizing functions that can be used as the solver 30,
and a further list of each of the constraint generators contained in the constraint generator library of the constraint builder
26. A user selects a desired mathematical operation and one or more of the constraints to be imposed upon the selected
image. After selection of the image to be processed, the constraints to be imposed and the mathematical operation to
be executed, the user can click on the Segregate indicator to commence image segregation processing.
[0050] Upon commencement of the image segregation processing, the service provider 24 retrieves the constraint
generator software modules for the selected constraints to identify the spatio-spectral operators utilized by the selected
constraints. Any spatio-spectral operators not already stored by the service provider 24 are generated by the operators
block 28, for the image being segregated, and the service provider 24 caches the results. The cached results can be
reused in any subsequent operation for a selected image, with the same set of associated parameters.
[0051] For example, if the selected constraint is a same illumination constraint, the service provider 24 identifies Type
C tokens, Type B tokens and a token map for the selected image. The Type C tokens were generated by the Type C
tokenization block 35. The service provider 24 operates the operators block 28 to generate the remaining operators
specified by the same illumination constraint.
[0052] Referring now to figure 5a, there is shown a flow chart for generating Type C token regions in the image file of
figure 2a, according to a feature of the present invention. Type C tokens can be readily identified in an image by the
Type C tokenization block 35, utilizing the steps of figure 5a. The operators block 28 can then analyze and process the
Type C tokens to construct Type B tokens when specified by a selected constraint, as will appear.
[0053] Prior to execution of the routine of figure 5a, the CPU 12 can operate to filter the image depicted in a subject
image file 18. The filters may include an image texture filter, to, for example, transform patterns of differing reflectance
caused by a textured material into a homogeneous representation that captures the spectral and spatial characteristics
of the textured region in the image. Identification of Type B tokens can be difficult in an image texture. A textured image
contains materials with, for example, more than one reflectance function that manifests as a defining characteristic. For
example, the defining characteristic can be a pattern of colors within the texture, such that the texture displays a certain
distribution of colors in any patch or region selected from anywhere within the textured region of the image.
[0054] In many instances, the texture filters may only be required on part of an input image, as much of the image
may include homogeneously colored objects. Therefore, prior to application of the texture filters, it is useful to identify
and mask off regions of homogeneous color. The texture filters are then only applied to areas where there appear to be
textured materials. An example algorithm for identifying textured regions is as follows:

1) Execute a type C tokenization on the N-band color values (e.g. RGB), storing the token results in a region map
R, where each pixel in the region map has the token ID of the token to which it belongs (see description of figure 5a).

2) Execute a median filter on the region map R (e.g. each pixel P_ij is replaced by the median token ID of a 7x7 box
around P_ij). Store the result in R-median.

3) Execute a filter on the original image that calculates the standard deviation of the pixels in a box around each
pixel (e.g. 7x7) for each color band. Put the result in S.

4) For each pixel in S, divide the standard deviation calculated for each color band by an estimated noise model
value. An example noise model is Sn = A*maxValue + B*pixelValue, where maxValue is the maximum possible
color band value, pixelValue is the intensity of a particular band, and A and B are constants experimentally determined
for the imaging system (e.g. A = 0.001 and B = 0.06 are typical). This step converts the standard deviation into a
normalized deviation for each color band. Store the results in Sn.

5) For each pixel in Sn, sum the squares of the normalized deviations for all N color bands, take the square root of
the result and divide by the number of bands N to create a deviation value D_ij. Compare the resulting deviation
value D_ij to a threshold (e.g. 1.0) assign a 1 to any pixel with a deviation value higher than the threshold, otherwise
assign the pixel a 0. Store the results in a texture mask image T.

6) For each pixel in T, if the texture mask value T_ij = 1 and the seed size of the token region with the id given in
the median region map R-median_ij is less than a threshold (e.g. < 4), label the pixel as a textured pixel. Otherwise,
label it as a homogeneous pixel. Store the result in the texture mask Tmask.

[0055] The output of the above algorithm is a mask, Tmask, which is an array of the size of the original image file 18
(n, m). Pixels (p(n, m)) having a corresponding Tmask location in the array with a 1 value should be treated as part of
an image region corresponding to texture materials and pixels with a corresponding Tmask array location having a value
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of 0 should be treated as part of an image region corresponding to materials of homogeneous color.
[0056] The CPU 12 can execute a software module that implements any well known method handling textures, such
as, for example, a Laws filter bank, or wavelets (see, for example, Randen, T.[Trygve], Husøy, J.H.[John Håkon], Filtering
for Texture Classification: A Comparative Study, PAMI(21), No. 4, April 1999, pp. 291-310). See also: Are Filter Banks
Necessary? Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2003, volume 2,
pages 691-698.
[0057] In one exemplary embodiment of the present invention, Type C tokens are generated using an intensity histo-
gram representation for each pixel of an image (or, preferably, for pixels of the image in regions identified as comprising
a texture). The Type C tokens generated using intensity histograms are then used to generate Type B tokens. An intensity
histogram representation for each pixel in a texture filter output image can be produced using the following algorithm:

A) Loop through all memory addresses/indexes in the Tmask array (n, m);
B) At each memory address/index of the Tmask array determine whether the value at each location is 1 or 0;
C) If a memory address/index of the Tmask has a 1 value indicating texture:

a. Open the corresponding memory address/index in the corresponding image file 18 p(n, m) and access that
memory address/index;
b. Open that memory address/index for writing data;
c. Initialize N 8-bin histograms to zero, one for each color band;
d. For each pixel q within a neighborhood of p (for example, an 11x11 pixel array):
For each of the N color values Cn of q (e.g. RGB wherein each color value is set between 0-255);

(i) If N color value is between 0 and 31, then increment the first bin in 8-bin histogram of color N;
(ii) If N color value is between 32 and 64, then increment the second bin in 8-bin histogram of color N;
(iii) If N color value is between 65 and 97, then increment the third bin in 8-bin histogram of color N;
(iv) If N color value is between 98 and 130, then increment the fourth bin in 8-bin histogram of color N;
(v) If N color value is between 131 and 163, then increment the fifth bin in 8-bin histogram of color N;
(vi) If N color value is between 164 and 196, then increment the sixth bin in 8-bin histogram of color N;
(vii) If N color value is between 197 and 229, then increment the seventh bin in 8-bin histogram of color N;
(viii) If N color value is between 230 and 255, then increment the eighth bin in 8-bin histogram of color N;

e. Concatenate the N 8-bin histogram values together into a single intednsity histogram comprising an 8xN
element vector;
f. Assign the 8xN element vector to the corresponding pixel p in the image file array p(n, m);
g. If current or next memory address/index is not last/Tmask (n, m), then move on to the next memory ad-
dress/index in Tmask (n, m) array and execute step B;
h. If current memory address/index is last/equal to Tmask (n, m), then cease looping through Tmask (n, m) array.

D) if a memory address/index has a 0 value:

i. If current address/index is not a last element in Tmask (n, m) array, then move on to the next memory
address/index in Tmask (n, m) array and execute step B;
ii. If current memory address/index location is a last element in Tmask (n, m) array, then cease looping through
Tmask (n, m) array.

[0058] After the transformation for each pixel in the textured region of the image from a set of color bands, for example
RGB, to an intensity histogram vector comprising a set of filter outputs, for example the 8 X N concatenation, the image
is treated exactly as the original color band image with respect to identifying type C tokens with the 8 X N element
intensity histogram vector being used in place of the RGB color band values.
[0059] Fig. 2b shows an 11 X 11 pixel array at the upper left hand corner of an image file 18. The 11 X 11 pixel array
of figure 2b is used to produce an intensity histogram representation for pixel p(6,6) at the center Z of the array, according
to the exemplary algorithm described above. In our example, it is assumed that the 11 X 11 array is within a checkerboard
pattern within the image depicted in the image file 18. The checkerboard pattern comprises a pattern of alternating red,
green and blue boxes as shown. Thus, pixel p(6,6) of our example will have a 1 value in the corresponding Tmask
generated by the CPU 12.
[0060] Pursuant to the exemplary algorithm, three 8 bin histograms are initialized by the CPU 12 (see figure 2c), one
for each of the red, green and blue color values of the subject pixel p(6,6). The 11 X 11 pixel array is then used to
determine the values within the bins of the three histograms. In our example, the upper left hand section of the 11 X 11
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array is a red box of the checkerboard pattern, and each pixel within that section (p(1,1) to p(5,5)) has an RGB value of
(123,0,0). The upper right hand section is green, thus the pixels within the section (p(1,7) to p(5,11)) each have an RGB
value of (0,123, 0). The lower left hand section is a blue box, with each of the pixels p(7,1) to p(11,5) having RGB values
of (0,0,123). Finally the lower right hand section of our example is again a red section, with each of the pixels p(7,7) to
p(11,11) having RGB values of (123,0,0), in the repeating red, green and blue checkerboard pattern.
[0061] As shown in Fig. 2b, the one (1) pixel thick cross-shaped border lines between red quadrant (p(1,1) to p(5,5)),
green quadrant (p(1,7) to p(5,11)), blue quadrant (p(7,1) to p(11,5)) and red quadrant (p(7,7) to p(11,11)) or any pixel
between p(6,1) to p(6,m) and any pixel between p(n,6) to p(11,6) may have an RGB value of (123,123,123). Pixel p(6,6)
at the center Z may also have the RGB value of (123,123,123).
[0062] Next, an 11 X 11 pixel box 301, with pixel Z at its center, is used to determine the value of pixel Z via an
histogram representation of pixel Z’s RGB color band values using the steps exemplarily described below. As shown in
Fig. 2b, p(1,1) has RGB color value of (123,0,0) indicating some presence of red color and absence of green color and
blue color. Since the red value of p(1,1) is 123, the corresponding bin for that number value in red 8 bin histogram, as
shown in Fig. 2c, would be incremented i.e. fourth bin within the red 8-bin histogram would be incremented. This process
would repeat itself until p(n,m) in pixel box 301 is reached. By this time, three 8-bin histograms, as shown in Fig. 2c,
may be filled with different values. These values may then be concatenated together into a single 8 X 3 element vector
and assigned to pixel Z in 11 X 11 pixel array depicted in the image file 18 of figure 2b.
[0063] Consequently, according to the exemplary algorithm described above and a checkerboard pattern within 11 X
11 pixel box 301 shown within image 18 depicted in Fig. 2b, the 3 8-bin histogram would be filled as follows:
In red 8-bin histogram, the fourth bin would have a value of 71 (the amount of repetitions of red values between 98 and
130 in 25 pixels of 2 red quadrants plus the amount of repetitions of red values between 98 and 130 in 11 pixels between
p(6,1) to p(6,m) plus the amount of repetitions of red values between 98 and 130 in 10 pixels between p(n,6) to p(11,6)
resulting in 25+25+11+10=71). In a similar calculation, the first bin would have a value of 50 to indicate all of the pixels
with a zero value for red. All the other bins in red 8-bin histogram would have the values of 0. Thus, the red 8-bin histogram
would be [50, 0, 0, 71, 0, 0, 0, 0].
[0064] In green 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of green values
between 98 and 130 in 25 pixels of the green quadrant plus the amount of repetitions of green values between 98 and
130 in 11 pixels between p(6,1) to p(6,m) plus the amount of repetitions of green values between 98 and 130 in 10 pixels
between p(n,6) to p(11,6) resulting in 25+11+10=46). The first bin has a value of 75 (for zero values of green). All the
other bins in green 8-bin histogram would have the values of 0. Thus, the green 8-bin histogram would be [75, 0, 0, 46,
0, 0, 0, 0].
[0065] In blue 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of blue values between
98 and 130 in 25 pixels of the blue quadrant plus the amount of repetitions of blue values between 98 and 130 in 11
pixels between p(6,1) to p(6,m) plus the amount of repetitions of blue values between 98 and 130 in 10 pixels between
p(n,6) to p(11,6) resulting in 25+11+10=46). The first bin, again, has a value of 75. All the other bins in blue 8-bin
histogram would have the values of 0. Thus, the blue 8-bin histogram would be [75, 0, 0, 46, 0, 0, 0, 0].
[0066] As a result of the above described algorithm, each 8-bin histogram, three in our example, would be concatenated
together into a single 8 X 3 element vector. Accordingly, this vector would be [50, 0, 0, 71, 0, 0, 0, 0, 75, 0, 0, 46, 0, 0,
0, 0, 75, 0, 0, 46, 0, 0, 0, 0].
[0067] Next, the above described vector would be assigned at p(6,6) at the center Z of the 11 X 11 array and therefore
replace the RGB value of pixel p(6,6), which originally was (123, 123, 123), with an intensity histogram set forth as [50,
0, 0, 71, 0, 0, 0, 0, 75, 0, 0, 46, 0, 0, 0, 0, 75, 0, 0, 46, 0, 0, 0, 0].
[0068] A 1st order uniform, homogeneous Type C token comprises a single robust color measurement among contig-
uous pixels of the image. At the start of the identification routine of figure 5a, the CPU 12 (executing as the Type C
tokenization block 35) sets up a region map in memory. In step 100, the CPU 12 clears the region map and assigns a
region ID, which is initially set at 1. An iteration for the routine, corresponding to a pixel number, is set at i = 0, and a
number for an N x N pixel array, for use as a seed to determine the token, is set an initial value, N = Nstart. Nstart can be
any integer > 0, for example it can be set at set at 11 or 15 pixels.
[0069] At step 102, a seed test is begun. The CPU 12 selects a first pixel, i = (1, 1) for example (see figure 2a), the
pixel at the upper left corner of a first N x N sample of the image file 18. The pixel is then tested in decision block 104
to determine if the selected pixel is part of a good seed. The test can comprise a comparison of the color value of the
selected pixel to the color values of a preselected number of its neighboring pixels as the seed, for example, the N x N
array. The color values comparison can be with respect to multiple color band values (RGB in our example) of the pixel
or the filter output intensity histogram representation of the pixel, in the event the image was filtered for texture regions,
as described above. If the comparison does not result in approximately equal values (for example, within the noise levels
of the recording device for RGB values) for the pixels in the seed, the CPU 12 increments the value of i (step 106), for
example, i = (1, 2), for a next N x N seed sample, and then tests to determine if i = imax (decision block 108).
[0070] If the pixel value is at imax, a value selected as a threshold for deciding to reduce the seed size for improved
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results, the seed size, N, is reduced (step 110), for example, from N = 15 to N = 12. In an exemplary embodiment of the
present invention, imax can be set at i = (n, m). In this manner, the routine of figure 5a parses the entire image at a first
value of N before repeating the routine for a reduced value of N.
[0071] After reduction of the seed size, the routine returns to step 102, and continues to test for token seeds. An Nstop
value (for example, N = 2) is also checked in step 110 to determine if the analysis is complete. If the value of N is at
Nstop, the CPU 12 has completed a survey of the image pixel arrays and exits the routine.
[0072] If the value of i is less than imax, and N is greater than Nstop, the routine returns to step 102, and continues to
test for token seeds.
[0073] When a good seed (an N x N array with approximately equal pixel values) is found (block 104), the token is
grown from the seed. In step 112, the CPU 12 pushes the pixels from the seed onto a queue. All of the pixels in the
queue are marked with the current region ID in the region map. The CPU 12 then inquires as to whether the queue is
empty (decision block 114). If the queue is not empty, the routine proceeds to step 116.
[0074] In step 116, the CPU 12 pops the front pixel off the queue and proceeds to step 118. In step 118, the CPU 12
marks "good" neighbors around the subject pixel, that is neighbors approximately equal in color value to the subject
pixel, with the current region ID. All of the marked good neighbors are placed in the region map and also pushed onto
the queue. The CPU 12 then returns to the decision block 114. The routine of steps 114, 116, 118 is repeated until the
queue is empty. At that time, all of the pixels forming a token in the current region will have been identified and marked
in the region map as a Type C token. In the event the pixels comprise intensity histogram representations, the token
can be marked as Type CT.
[0075] When the queue is empty, the CPU 12 proceeds to step 120. At step 120, the CPU 12 increments the region
ID for use with identification of a next token. The CPU 12 then returns to step 106 to repeat the routine in respect of the
new current token region.
[0076] Upon arrival at N = Nstop, step 110 of the flow chart of figure 5a, or completion of a region map that coincides
with the image, the routine will have completed the token building task. Figure 5b is an original image used as an example
in the identification of tokens. The image shows areas of the color blue and the blue in shadow, and of the color teal
and the teal in shadow. Figure 5c shows token regions corresponding to the region map, for example, as identified
through execution of the routine of figure 5a (Type C tokens), in respect to the image of figure 5b. The token regions
are color coded to illustrate the token makeup of the image of figure 5b, including penumbra regions between the full
color blue and teal areas of the image and the shadow of the colored areas.
[0077] Upon completion of the routine of figure 5a by the Type C tokenization block 35, the service provider 24 stores
the Type C token region information for the selected image. Prior to commencing any process to generate Type B tokens
from the identified Type C tokens, the operators block 28 tests each identified Type C token to make certain that each
Type C token encompasses a single material. While each Type C token comprises a region of the image having a single
robust color measurement among contiguous pixels of the image, the token may grow across material boundaries.
[0078] Typically, different materials connect together in one Type C token via a neck region often located on shadow
boundaries or in areas with varying illumination crossing different materials with similar hue but different intensities. A
neck pixel can be identified by examining characteristics of adjacent pixels. When a pixel has two contiguous pixels on
opposite sides that are not within the corresponding token, and two contiguous pixels on opposite sides that are within
the corresponding token, the pixel is defined as a neck pixel.
[0079] Figure 6 shows a flow chart for a neck test for Type C tokens. In step 122, the CPU 12 examines each pixel of
an identified token to determine whether any of the pixels under examination forms a neck. The routine of figure 6 can
be executed as a subroutine directly after a particular token is identified during execution of the routine of figure 5a. All
pixels identified as a neck are marked as "ungrowable". In decision block 124, the CPU 12 determines if any of the pixels
were marked.
[0080] If no, the CPU 12 exits the routine of figure 6 and returns to the routine of figure 5a (step 126).
[0081] If yes, the CPU 12 proceeds to step 128 and operates to regrow the token from a seed location selected from
among the unmarked pixels of the current token, as per the routine of figure 5a, without changing the counts for seed
size and region ID. During the regrowth process, the CPU 12 does not include any pixel previously marked as ungrowable.
After the token is regrown, the previously marked pixels are unmarked so that other tokens may grow into them.
[0082] Subsequent to the regrowth of the token without the previously marked pixels, the CPU 12 returns to step 122
to test the newly regrown token.
[0083] Neck testing identifies Type C tokens that cross material boundaries, and regrows the identified tokens to
provide single material Type C tokens suitable for use in creating Type B tokens. Figure 5d shows Type B tokens
generated from the Type C tokens of figure 5c, according to a feature of the present invention. The present invention
provides several exemplary techniques of pixel characteristic analysis for constructing Type B tokens from Type C
tokens. One exemplary technique involves arbitrary boundary removal. The arbitrary boundary removal technique can
be applied to Type C tokens whether they were generated using N color band values (RGB in our example) of the pixel
or the filter output representation of the pixel, in the event the image was filtered. Actual boundaries of any particular
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Type C token will be a function of the seed location used to generate the token, and are thus, to some extent arbitrary.
There are typically many potential seed locations for each particular token, with each potential seed location generating
a token with slightly different boundaries and spatial extent because of differences among the color values of the pixels
of the various seeds, within the noise ranges of the recording equipment.
[0084] Figure 7 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technique, according
to a feature of the present invention. In step 200, the CPU 12 is provided with a set (Tc) of Type C tokens generated
with a seed size (S) via the routine of figure 5a, with neck removal via the routine of figure 6. The seed size S = Smax,
for example, S = 4 pixels. In step 202, for each Type C token, tc in the set Tc the CPU 12 selects a number (for example
50) of potential seeds s1 to sn. In our example, each selected seed will be a 4X4 pixel array from within the token region,
the pixels of the array being of approximately equal values (within the noise levels of the recording device).
[0085] In step 204, the CPU 12 grows a new Type C token, utilizing the routines of figures 5a and 6, from each seed
location, s1 to sn of each token tc in the set Tc. The newly grown tokens for each token tc are designated as tokens rc1
to rcn. The newly grown tokens rc1 to rcn for each token tc generally overlap the original Type C token tc, as well as one
another.
[0086] In step 206, the CPU 12 operates to merge the newly generated tokens rc1 to rcn of each token tc, respectively.
The result is a new token Rt corresponding to each original token tc in the set Tc. Each new token Rt encompasses all
of the regions of the respective overlapping tokens rc1 to rcn generated from the corresponding original token tc. The
unions of the regions comprising the respective merged new tokens Rt are each a more extensive token than the original
Type C tokens of the set. The resulting merged new tokens Rt result in regions of the image file 18, each of a much
broader range of variation between the pixels of the respective token Rt than the original Type C token, yet the range
of variation among the constituent pixels will still be relatively smooth. Rt is defined as a limited form of Type B token,
Type Bab1, to indicate a token generated by the first stage (steps 200-206) of the arbitrary boundary removal technique
according to a feature of the present invention.
[0087] In step 208, the CPU 12 stores each of the Type Bab1 tokens generated in steps 202-206 from the set of tokens
Tc, and proceeds to step 210. Type Bab1 tokens generated via execution of steps 202-206 may overlap significantly. In
step 210, the CPU 12 operates to merge the Rt tokens stored in step 208 that overlap each other by a certain percentage
of their respective sizes. For example, a 30% overlap is generally sufficient to provide few, if any, false positive merges
that combine regions containing different materials. The new set of merged tokens still may have overlapping tokens,
for example, previously overlapping tokens that had a less than 30% overlap. After all merges are complete, the CPU
12 proceeds to step 212.
[0088] In step 212, the CPU 12 identifies all pixels that are in more than one token (that is in an overlapping portion
of two or more tokens). Each identified pixel is assigned to the token occupying the largest region of the image. Thus,
all overlapping tokens are modified to eliminate all overlaps.
[0089] In step 214, the CPU 12 (as the Type C tokenization block 35 or the operators block 28) stores the final set of
merged and modified tokens, now designated as Type Bab2 tokens, and then exits the routine. As noted above, the Type
Bab2 tokens were generated from Type C tokens whether the Type C tokens were generated using N color band values
(RGB in our example) of the pixel or the filter output representation of the pixel, in the event the image was filtered.
[0090] A second exemplary technique according to the present invention, for using Type C tokens to create Type B
tokens, is adjacent planar token merging. The adjacent planar token merging can be implemented when an image depicts
areas of uniform color, that is for non-textured regions of an image. Initially, a token graph is used to identify tokens that
are near to one another. Figure 8 shows a flow chart for creating a token graph, containing token map information,
according to a feature of the present invention. Each token tc in the set of Type C tokens Tc, generated through execution
of the routines of figures 5a and 6, is evaluated in terms of a maximum distance Dmax between tokens defining a
neighboring pair of tokens, tc, tn, of the set Tc, a minimum number of token perimeter pixels, Pmin, in each token of the
neighboring pair of tokens, and a minimum fraction of perimeter pixels, Fmin, of each token of a neighboring pair of
tokens, required to be within Dmax.
[0091] In step 300, the CPU 12 selects a Type C token tc in the set of Type C tokens Tc, and identifies the pixels of
the selected token tc forming the perimeter of the token. In a decision block 302, the CPU 12 determines whether the
number of perimeter pixels is less than Pmin, for example 10 pixels.
[0092] If yes, the CPU 12 proceeds to decision block 304 to determine whether there are any remaining tokens tc in
the set of Type C tokens Td. If yes, the CPU 12 returns to step 300, if no, the CPU 12 exits the routine 306.
[0093] If no, the CPU 12 proceeds to step 308. In step 308, the CPU 12 generates a bounding box used as a mask
to surround the selected token tc The bounding box is dimensioned to be at least Dmax larger than the selected token tc
in all directions. A known distance transform (for example, as described in P. Felzenszwalb and D. Huttenlocher, Distance
Transforms of Sampled Functions, Cornell Computing and Information Science Technical Report TR2004-1963, Sep-
tember 2004), is executed to find the distance from each perimeter pixel of the selected token tc to all the pixels in the
surrounding bounding box. The output of the distance transform comprises two maps, each of the same size as the
bounding box, a distance map and a closest pixel map. The distance map includes the Euclidean distance from each
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pixel of the bounding box to the nearest perimeter pixel of the selected token tc. The closest pixel map identifies, for
each pixel in the distance map, which perimeter pixel is the closest to it.
[0094] In step 310, the CPU 12 scans the distance map generated in step 308 to identify tokens corresponding to
pixels of the bounding box (from the region map generated via the routine of figure 5a), to identify a token from among
all tokens represented by pixels in the bounding box, that has a number Ncn of pixels within the distance Dmax, wherein
Ncn is greater than Pmin, and greater than Fmin * perimeter pixels of the respective token and the average distance
between the respective token and tc is the lowest of the tokens corresponding to the pixels in the bounding box. If these
conditions are satisfied, the respective token is designated tn of a possible token pair tc, tn, and a link Lcn is marked active.
[0095] In step 312, the CPU 12 checks to determine whether a reciprocal link Lcn is also marked active, and when it
is marked active, the CPU 12 marks and stores in the token graph, an indication that the token pair tc, tn is a neighboring
token pair. The reciprocal link refers to the link status in the evaluation of the token designated as tn in the current
evaluation. If that token has yet to be evaluated, the pair is not designated as a neighboring token pair until the link Lcn
is verified as active in the subsequent evaluation of the token tn. The CPU 12 then returns to decision block 304 to
determine whether there are any further tokens in the set Tc.
[0096] Upon completion of the token graph, the CPU 12 utilizes token pair information stored in the graph in the
execution of the routine of figure 9. Figure 9 shows a flow chart for constructing Type B tokens via the adjacent planar
token merging technique, according to a feature of the present invention. In the adjacent planer merging technique, pairs
of tokens are examined to determine whether there is a smooth and coherent change in color values, in a two dimensional
measure, between the tokens of the pair. The color change is examined in terms of a planar representation of each
channel of the color, for example the RGB components of the pixels according to the exemplary embodiments of the
present invention. A smooth change is defined as the condition when a set of planes (one plane per color component)
is a good fit for the pixel values of two neighboring tokens. In summary, neighboring tokens are considered the same
material and a Type B token when the color change in a two-dimensional sense is approximately planar.
[0097] In step 320, the CPU 12 selects a token pair tc, tn from the token graph. In decision block 322, the CPU 12
determines whether the mean color in token tc is significantly different from the mean color in the token tc. The difference
can be a function of a z-score, a known statistical measurement (see, for example, Abdi, H. (2007), Z-scores, in N.J.
Salkind (Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks, CA: Sage), for example, a z-score greater
than 3.0.
[0098] If the mean colors of the token pair are different, the CPU 12 proceeds to decision block 324 to determine
whether there are any additional token pairs in the token graph. If yes, the CPU 12 returns to step 320. If no, the CPU
12 exits the routine (step 326).
[0099] If the mean colors are within the z-score parameter, the CPU 12 proceeds to step 328. In step 328, the CPU
12 performs a mathematical operation such as, for example, a least median of squares regression (see, for example,
Peter J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association, Vol. 79, No.
388 (Dec., 1984), pp. 871-880) to fit a plane to each color channel of the pixels (in our example RGB) of the token pair
tc, tn, as a function of row n and column m (see figure 2), the planes being defined by the equations: 

wherein parameter values X, Y and C are determined by the least median of squares regression operation of the CPU 12.
[0100] Upon completion of the plane fitting operation, the CPU 12 proceeds to step 330. In step 330, the CPU 12
examines each pixel of each of the tokens of the token pair tc, tn to calculate the z-score between each pixel of the
tokens and the planar fit expressed by the equation of the least median of squares regression operation. When at least
a threshold percentage of the pixels of each token of the pair (for example, 80%), are within a maximum z-score (for
example, 0.75), then the neighboring token pair is marked in the token graph as indicating the same material in the
image. After completion of step 330, the CPU 12 returns to decision block 324.
[0101] Upon exiting the routine of figure 9, the CPU 12 examines the token graph for all token pairs indicating the
same material. The CPU 12 can achieve the examination through performance of a known technique such as, for
example, a union find algorithm. (See, for example, Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms
for disjoint set union problems, ACM Computing Surveys, Volume 23, Issue 3 (September 1991), pages 319-344). As
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a simple example, assume a set of seven Type C tokens T1, T2, T3, T4, T5, T6, T7. Assume that the result of the execution
of figure 9, (performance of the adjacent planar analysis), indicates that tokens T1 and T2 are marked as the same
material, and tokens T1 and T3 are also marked as the same material. Moreover, the results further indicate that tokens
T4 and T5 are marked as the same material, and tokens T5 and T6 are also marked as the same material. The result of
execution of the union find algorithm would therefore indicate that tokens {T1, T2, T3} form a first group within the image
consisting of a single material, tokens {T4, T5, T6} form a second group within the image consisting of a single material,
and token {T7} forms a third group within the image consisting of a single material. The groups {T1, T2, T3}, {T4, T5, T6}
and {T7} form three Type B tokens.
[0102] A third exemplary technique according to the present invention, for using Type C tokens to create Type B
tokens, is a local token analysis. A local token approach generates Type C tokens using a window analysis of a scene
depicted in an image file 18. Such tokens are designated as Type Cw tokens. Figure 10 is a flow chart for generating
Type Cw tokens via the local token analysis technique, according to a feature of the present invention.
[0103] In step 400, the CPU 12 places a window of fixed size, for example, a 33x33 pixel array mask, over a preselected
series of scan positions over the image. The window can be a shape other than a square. The scan positions are offset
from one another by a fixed amount, for example © window size, and are arranged, in total, to fully cover the image.
The window area of pixels at each scan position generates a Type Cw token, though not every pixel within the window
at the respective scan position is in the Type Cw token generated at the respective scan position.
[0104] At each scan position (step 402), the CPU 12 operates, as a function of the pixels within the window, to fit each
of a set of planes, one corresponding to the intensity of each color channel (for example, RGB), and an RGB line in RGB
space, characterized by a start point I0 and an end point I1 of the colors within the window. The planar fit provides a
spatial representation of the pixel intensity within the window, and the line fit provides a spectral representation of the
pixels within the window.
[0105] For the planar fit, the planes are defined by the equations: 

wherein parameter values X, Y and C are determined by CPU 12 by executing a mathematical operation such as the
least median of squares regression discussed above, a least-squares estimator, such as singular value decomposition,
or a robust estimator such as RANSAC (see, for example, M. A. Fischler, R. C. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to image Analysis and Automated Cartography. Comm. of the ACM, Vol
24, pp 381-395, 1981).
[0106] For the RGB line fit, the line is defined by: 

wherein the parameter t has a value between 0 and 1, and can be determined by the CPU 12 utilizing any of the
mathematical techniques used to find the planar fit.
[0107] At each scan position, after completion of step 402, the CPU 12 operates in step 404 to examine each pixel in
the window in respect of each of the planar fit representation and RGB line representation corresponding to the respective
window scan position. For each pixel, the CPU 12 determines an error factor for the pixel relative to each of the established
planes and RGB line. The error factor is related to the absolute distance of the pixel to its projection on either from either
the planar fit or the RGB line fit. The error factor can be a function of the noise present in the recording equipment or
be a percentage of the maximum RGB value within the window, for example 1%. Any pixel distance within the error
factor relative to either the spatial planar fit or the spectral line fit is labeled an inlier for the Type Cw token being generated
at the respective scan position. The CPU 12 also records for the Type Cw token being generated at the respective scan
position, a list of all inlier pixels.
[0108] At each scan position, after completion of step 404, the CPU 12 operates in step 406 to assign a membership
value to each inlier pixel in the window. The membership value can be based upon the distance of the inlier pixel from
either the planar fit or the RGB line fit. In one exemplary embodiment of the present invention, the membership value is
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the inverse of the distance used to determine inlier status for the pixel. In a second exemplary embodiment, a zero-
centered Gaussian distribution with a standard deviation is executed to calculate membership values for the inlier pixels.
[0109] After all of the scan positions are processed to generate the Type Cw tokens, one per scan position, the CPU
12 operates to compile and store a token data list (step 408). The token data list contains two lists. A first list lists all of
the pixels in the image file 18, and for each pixel, an indication of each Type Cw token to which it labeled as an inlier
pixel, and the corresponding membership value. A second list lists all of the generated Type Cw tokens, and for each
token an indication of the inlier pixels of the respective token, and the corresponding membership value. After compiling
and storing the token data list, the CPU 12 exits the routine (step 410).
[0110] Figure 11 is a flow chart for constructing Type B tokens from the Type Cw tokens generated via the local token
analysis technique, according to a feature of the present invention. In step 420, the CPU 12 calculates a similarity of
parameters of the spatial planer dimensions and spectral RGB lines of adjacent or overlapping Type Cw tokens generated
through execution of the routine of figure108. Overlapping and adjacent Type Cw tokens can be defined as tokens
corresponding to scan positions that overlap or are contiguous. A similarity threshold can be set as a percentage of
difference between each of the spatial planer dimensions and spectral RGB lines of two overlapping or adjacent Type
Cw tokens being compared. The percentage can be a function of the noise of, for example, the camera 14 used to record
the scene of the image file 18. All overlapping or adjacent Type Cw token pairs having a calculated similarity within the
similarity threshold are placed on a list.
[0111] In step 422, the CPU 12 sorts the list of overlapping or adjacent Type Cw token pairs having a calculated
similarity within the similarity threshold, in the order of most similar to least similar pairs. In step 424, the CPU 12 merges
similar token pairs, in the order of the sort, and labeling pairs as per degree of similarity. Each merged token pair will
be considered a TypeB token. In step 426, the CPU 12 stores the list of TypeB tokens, and exits the routine.
[0112] In a further exemplary technique according to the present invention, a filter response, such as, for example, a
second derivative filter response, is executed by the CPU 12 to identify regions of an image having uniform material
reflectance. The identified regions are then used to generate Type B tokens. A filter response can be implemented by
performing a convolution of pixel values. Convolution is a mathematical technique that applies a filter mask to an array
of pixels to determine a function response value for a pixel at the center of the array. The filter mask represents a
mathematical function such as, for example, a Laplacian of Gaussian kernel (LoG). The LoG filter is a known filter used
to determine a mathematical function output value at each pixel location of an image, an output value that is related to
a derivative value at the respective pixel location, and utilized to detect material edges in an image.
[0113] Figure 12a shows intensity profiles within an image, and corresponding first derivative and second derivative
profiles for each of a material edge, a single material with a shadow over a portion of the material and a single material
under constant illumination. A derivative is a measure of a rate of change. In an image, a first derivative measures the
rate of change in the intensity of a color band, for example, the rate of change of red, from pixel to pixel of the image.
A second derivative is a measure of the rate of change of the rate of change, i.e., a measure of the rate of change of
the first derivative. The A column of figure 12a shows the intensity profile, and first and second derivative profiles at a
material edge within an image. As shown in column A, the color intensity profile forms a sharp edge profile at a material
boundary, resulting in a spike in the first derivative value reflecting the sharp rate of change of material intensity at the
material boundary. Consequently, the second derivative value undergoes a zero crossing, first peaking in the positive
direction as the first derivative peaks at the boundary, and then crossing zero and peaking in the negative direction as
the first derivative peak returns to zero.
[0114] In the known LoG filter technique, high first derivative values, first derivative peaks or second derivative zero
crossings among pixels, are utilized as indicia of a material edge, as reflected in column A of figure 12a. In contrast to
the first derivative peaks and second derivative zero crossings of a material edge, columns B and C of figure 12a show,
respectively, intensity profiles and corresponding first derivative and second derivative profiles for each of a single
material with a shadow over a portion of the material and a single material under constant illumination. In column B, the
intensity of the image undergoes an attenuated edge, corresponding to the penumbra of a shadow falling across pixels
representing a single material. Thus, the first derivative slowly raises and falls with the attenuated change of a penumbra,
and the second derivative remains at a relatively low value throughout the slow rise and fall of the first derivative value.
As shown in column C, a constant value for the illumination of a single material results in a constant low value among
pixels for each of the first derivative and second derivative values.
[0115] According to a feature of the present invention, a second derivative filter, such as, for example, a LoG filter, is
used in a novel manner, to identify regions of an image, for example, patches comprising pixels having uniformly low
second derivative values, as shown in each of columns B and C of figure 12a. In an exemplary embodiment, each patch
is of a preselected size (for example, either a 3X3 pixel array, a 5X5 pixel array or a 7X7 pixel array). As described
above, a patch of uniform material reflectance under uniform light will have a near constant color value across the pixels
of the patch, resulting in a low value for the second derivative at each pixel location in the patch. Additionally, a constant
material reflectance in an attenuated penumbra will also result in a low value for the second derivative among pixels of
a patch.
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[0116] Thus, ascertaining the location of a patch of pixels, all having a low value for the second derivative, provides
a high indication of likelihood that there is not a material edge within the patch, and that all of the pixels of the patch
have the same material reflectance. The present invention contemplates any function response among a patch of pixels
that is relevant to a likelihood of uniform material reflectance, such as, for example, second derivative values, third
derivative values or other measures of the curvature of the intensity profile of the image, where the intensity profile is
the shape of the image in (x, y, intensity) space.
[0117] A Laplacian filter provides a sum of partial second derivatives at a point in the image. A Laplacian filter can
therefore be implemented to ascertain function outputs proportional to the second derivative values for pixels of an
image. The Laplacian of an image I is defined as: 

[0118] The above function is the sum of the second partial derivatives in the x and y directions (along the n rows and
m columns of the array of figure 2), and is proportional to the average second derivative across all directions.
[0119] Due to the presence of noise and small-scale variations in an image, first and second derivative analysis of an
image is typically performed on a blurred version of the image.
[0120] A blurred version of an image smooths out any irregularities caused by noise and image variations, and can
be obtained through any standard blurring function. For example, a convolution of the image with a filter mask based
upon a Gaussian function. A Gaussian function can be defined by: 

[0121] The σ factor is the standard deviation and controls the degree of blurring of a convolved image. A small value
for σ results in a relatively small degree of blurring, while a large value for σ results in significant blurring.
[0122] A LoG function combines the Laplacian and Gaussian functions into a single function that serves to both blur
the image and ascertain the Laplacian values to provide accurate outputs proportional to the second derivative values
for the pixels of an image. In place of the LoG function, a Difference of Gaussians or convolution with simple derivative
masks on a blurred image can be used. A LoG function equation is as follows: 

[0123] Figure 12b is an example of a LoG filter mask. The mask comprises a 2k +1 X 2k +1 array of multiplication
factors, in our example, k = 3, for 7 rows of factors, each with 7 columns, thus, a length of 7 σ relative to the center, with
σ = 1 in the filter mask of figure 12b. The filter mask of figure 12b is arranged for use in connection with a convolution
of the image via 7 X 7 pixel patch samples of the image file of figure 2a. The multiplication factors express the LoG
function and are applied to the pixels of the corresponding patch, and all the results are summed to provide a function
response value for the pixel at the center of the 7 X 7 array, as will be described.
[0124] To that end, figure 12c shows an illustration of a representative pixel patch comprising a 7 X 7 array within the
n X m pixel array of the image file of figure 2a. The 7 X 7 patch in the example of figure 12b forms the upper left hand
corner of the n X m pixel array of figure 2a, and would be used to calculate a value proportional to the second derivative
for the pixel p(4,4), the center pixel of the representative array (shown in bold).
[0125] Each multiplication factor of the filter mask corresponds to a function response for a corresponding pixel of the
7 X 7 patch, and is used to calculate a multiplication result for the respective pixel of the patch. The multiplication factor
applied to each pixel is determined in relation to the combined Laplacian and Gaussian functions set forth above, (an
LoG filter mask) as is known in the art. The filter mask expresses the following summation equation: 

[0126] Each pixel p(n, m) is represented by N color bands, for example RGB, for the red, green and blue components
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of the color value for the pixel p(n, m). The multiplication factors of the filter mask will be applied separately to each color
band of the pixels of the patch, resulting in a separate second derivative value for each color band. In our example, we
will describe the calculation for the red band (p(n, m RED)). Thus, p(1,1 RED) is multiplied by the factor 0.00031426,
while the next pixel of the row, p(1,2 RED) is multiplied by the factor 0.002632078, and so on. The pixels of each row,
1-7 are multiplied in order, across the columns, by the multiplication factors at the corresponding rows and columns of
the LoG filter mask. The results of all the multiplications are added together to provide a sum that is proportional to a
second derivative value for the center pixel p(4,4), as a function of the LoG function.
[0127] A similar filter response output is performed for each pixel p(n, m) of the n X m array and for each color band
of each pixel, to compile a list of second derivative values for the pixels p(n, m) of an image file 18. At border regions of
the image, for example, pixels within 3 pixels of the image boundary, for pixel values of points of the 7 X 7 patch that
extend beyond the image boundary, estimates can be made for the respective color values, based upon various as-
sumptions, as follows:

1. assume the values for pixels at the image boundary continue beyond the boundary, such that values for pixels
in the patch that extend beyond the image boundary are set at the same color intensity as the color intensity of the
nearest boundary pixel;
2. assume the image reflects at the boundary, for example, the values for pixels of the patch beyond the image
boundary are a mirror image of corresponding pixels within the image; or
3. assume all values outside the image are a constant value, such as 0 or the maximum image value.

[0128] Second derivative values can be either positive or negative. In the exemplary embodiment of the present
invention, an absolute value is used for the second derivative. Moreover, the values for each band, in our example, red,
green and blue, are represented as a single number per pixel. The single number value can be obtained by taking the
maximum second derivative filter response output from among the color bands of the pixel, taking an average for the
filter response outputs of all the bands or, in hyperspectral imagery, taking a percentile value from each band, for example
the 90th percentile value filter output value from among the color bands.
[0129] In one embodiment of the filter response feature, second derivative values are determined in a log space version
or a gamma transform of the image. When a region of an image is very dark, and, further, in deep shadow, first and
second derivatives become small, and are not useful as accurate indications of regions of uniform material reflectance.
The use of logarithmic values of color intensity or a gamma transform maintains an equality of color differences, regardless
of the illumination flux (or image exposure) affecting the image.
[0130] Figure 13 is a flow chart for identifying regions of uniform material reflectance within the n X m pixel array image
file of figure 2a, according to the filter response feature of the present invention. In step 500, an image file 18 (see figure
2a) is input to the CPU 12. In step 510, the CPU 12 calculates a filter response for each of the pixels p(n, m) of the image
file 18. In our exemplary embodiment of the present invention, the filter response is a value proportional to the second
derivative at each pixel p(n, m) of the image file 18. Such values can be calculated by the CPU 12 via a convolution of
the image file 18, by the CPU 12 with a LoG filter mask, as described above in respect of figures 12b and 12c.
[0131] In order to execute the filter response step, appropriate filter parameters are input to the CPU 12. In the case
of a LoG filter mask, the relevant parameter is the σ factor, which determines the degree of blurring. The σ factor can
range, for example, between 0.5 and 3.0.
[0132] In step 520, the CPU 12 operates to locate patches of the pixel array with filter responses that indicate uniform
material reflectance among the pixels of the patch. In the example of second derivative values, a low filter response is
indicative of the absence of material edges, and thus provides a high degree of likelihood that the patch encompasses
a region of the image that has a uniform material reflectance, as described above. Input parameters relevant to step
520 include patch size and shape and a definition of a low filter response. Each patch can be, for example, square,
rectangular, circular, and so on. In our example, each patch can comprise a 3 X 3 square or circular patch with a radius
of 9. The CPU 12 examines a sequence of patches across the entire image file 18, with each patch being centered on
a different one of the pixels p(n, m) of the array of the subject image file 18, across all the pixels of the array.
[0133] For each patch examined, the CPU 12 determines whether the filter responses of the pixels of the patch under
examination, are below a threshold value. The measure can, for example, be a threshold measured against the average
filter response for the pixels of the patch or a threshold measured against the maximum second derivative value among
the pixels of the patch. The threshold can be determined empirically, with lower values tending to more significant
segmentation (dividing the image into too many regions) and higher values leading to errors (considering two regions
to be the same material reflectance when they are not). The CPU 12 lists each examined patch of the subject image file
18 that has a result below the threshold, and therefore indicates a high likelihood of uniform material reflectance within
the examined patch.
[0134] In step 530, the CPU 12 operates to merge all sufficiently overlapping patches from among patches that are
on the above complied list of patches indicating a high likelihood of uniform material reflectance, to compose a list of
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merged patches as Type B tokens. A parameter relevant to step 530 is a definition of "sufficiently overlapping." For
example, the CPU 12 merges all listed patches that have 5 pixels in common, or 10 pixels in common, and so on. Given
that each patch has a high likelihood of uniform material reflectance, and the patches share a number of pixels in
common, it can be concluded that the two sufficiently overlapping patches have the sufficiently overlapping patches
share the same material reflectance. All listed patches that overlap to the extent that they share the selected number of
pixels are merged, and the merging is cumulative for mutually overlapping patches to provide the maximum extent of
regions of the image having uniform reflectance. The output (540) of the routine is a list of Type B tokens, a segmentation
of the image into regions of uniform reflectance. Inasmuch as each merged region may include pixels having non-zero
first derivatives, each identified Type B token may encompass significant illumination variation.
[0135] Referring now to figure 14, there is shown a flow chart for combining results from executions of the routine of
figure 13 with differing parameters, according to a feature of the present invention. As noted in the description of figure
13, various variable parameters are input to the CPU 12. In our exemplary embodiment, the variable parameters include
the σ factor, patch size and shape, a definition of a low filter response and a definition of sufficiently overlapping. Different
combinations of parameters yield differing results. One set of parameters can capture some portions of an image well,
with well defined Type B tokens, but leave other portions of the image in many small unconnected patches, while another
set of parameters might capture different parts of the image well. Thus, by varying values within the set of parameters,
and executing the routine of figure 13 several times, one time with each unique set of parameters, the CPU 12 can obtain
several sets of segmentation results to provide a more robust overall result that is significantly improved from a result
that would be obtained from any one particular set of parameters.
[0136] For example, a small patch size will localize material edges more effectively, while larger patch sizes avoid
crossing gaps where edges occasionally disappear. The threshold should also be lowered as patch size and the σ factor
increase, and so on. To that end, in step 550, an image file 18 is input to the CPU 12. In step 560, the CPU 12 executes
the routine of figure 11 several times in succession, each time with a different set of input parameters.
[0137] In step 570, the CPU 12 operates to merge the results of the several segmentation operations for the subject
image file 18. The merge operation can be similar to the merge step 530 of the routine of figure 13, for example, a merge
of all identified Type B tokens that overlap by a selected number of pixels. Alternatively, the CPU 12 can implement the
overlap criteria set forth below, in respect of the following description of a further exemplary embodiment of the present
invention.
[0138] In step 580, the CPU 12 can optionally merge in Type C tokens identified by the CPU 12 during execution of
the routine of figure 5a, as described above. In examining pixel patches for low second derivative values, the filter
response technique inherently tends to avoid material edges, and thus, the technique provides Type B tokens that can
fall short of image areas around edges. To "fill out" Type B tokens identified through the second derivative filter response
technique, the CPU 12 can merge the identified Type B tokens that overlap previously identified Type C tokens. Again
the overlap criteria can be as described above. In step 590, the CPU 12 outputs a list of Type B tokens.
[0139] In a further exemplary embodiment of the present invention, the CPU 12 (executing as the operators block 28)
compiles lists of Type B tokens separately generated through each of and/or a combination of one or more of the arbitrary
boundary removal, adjacent planar token merging, local token analysis and filter response techniques. The determination
of the combination of techniques used depends in part on whether a particular region of the image was filtered because
of texturing of the image. Since each Type B token generated through the described techniques likely represents a single
material under varying illumination conditions, merging sufficiently overlapping Type B tokens generated through the
use of varying and different techniques, provides a resulting, merged Type B token that represents a more extensive
area of the image comprising a single material, and approaches the extent of a Type A token.
[0140] Sufficiently overlapping can be defined by satisfaction of certain pixel characteristic criteria, such as, for example:

A) The two Type B tokens have at least n of the original Type C tokens in common, for example, n = 1
B) The two Type B tokens have at least n pixels in common, for example, n = 20
C) The two Type B tokens have at least n% overlap, that is at least n% of the pixels in a first one of the two Type
B tokens are also found in the second one of the two Type B tokens or vice versa, wherein, for example n% = 10%.
D) The percentage of pixels in a smaller one of the two Type B tokens, also found in the larger one of the two Type
B tokens is above a preselected threshold, for example 15%.
E) A preselected combination of criteria A-D.

[0141] Merging of two sufficiently overlapping Type B tokens can be accomplished via a mathematical operation such
as execution of the union find algorithm discussed above. In the case of two overlapping Type B tokens that do not
satisfy the above discussed criteria, the overlapping pixels of the two tokens can be assigned to the larger one of the
two Type B tokens.
[0142] As a result of execution by the Type C tokenization block 35 and/or the operators block 28 (via the CPU 12) of
the token generation and merging techniques according to features of the present invention, an image can be accurately
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segmented into tokens representing discrete materials depicted in the scene (Type B tokens) and tokens representing
regions of robust similar color (Type C tokens), thus providing a basis for computational efficiencies, as the token
representations capture spatio-spectral information of a significant number of constituent pixels. The service provider
24 stores all of the Type C and Type B tokens generated through execution of the above described token generation
techniques, along with the relevant token map information, for example, as determined during execution of the adjacent
planar token merging technique, and cross-references the stored operator results to the associated selected image file
18, for use in any segregation processing of the selected image.
[0143] In our example of a same illumination constraint, the service provider 24 identifies Type C and Type B tokens
as the operators required by the selected constraint. The Type C tokenization block 35 generated the Type C tokens.
The service provider 24 operates the operators block 28 to execute the above described techniques, to generate the
relevant Type B tokens for the image 32, as well as a token map. The constraint builder 26 organizes the generated
token operators according to the exemplary matrix equation, [A] [x] = [b], for input to the solver 30. In the same illumination
constraint, the constraining relationship of the relevant constraint generator software module is that adjacent Type C
tokens, as indicated by the token map information, are lit by the same illumination, unless the adjacent Type C tokens
are part of the same Type B token.
[0144] Each Type C token stored by the service provider 24 is identified by a region ID, and includes a listing of each
constituent pixel by row and column number. Each pixel of a Type C token will be of approximately the same color value,
for example, in terms of RGB values, as all the other constituent pixels of the same Type C token, within the noise level
of the equipment used to record the image. An average of the color values for the constituent pixels of each particular
Type C token can be used to represent the color value for the respective Type C token. Each Type B token is identified
by constituent Type C tokens, and thus can be processed to identify all of its constituent pixels via the respective
constituent Type C tokens.
[0145] Pursuant to a feature of the present invention, a model for image formation reflects the basic concept of an
image as comprising two components, material and illumination. This relationship can be expressed as: I = ML, where
I is the image color, as recorded and stored in the respective image file 18, M the material component of the recorded
image color and L the illumination component of the recorded image color. The I value for each Type C token is therefore
the average color value for the recorded color values of the constituent pixels of the token.
[0146] Thus: log(I) = log (ML) = log (M) + log(L). This can be restated as i = m + l, where i represents log(l), m represents
log(M) and / represents log(L). In the constraining relationship of the same illumination constraint, in an example where
three Type C tokens, a, b and c, (see figure 15) are adjacent (and not within the same Type B token, (as can be shown
by a comparison of row and column numbers for all constituent pixels)), la = lb = lc. Since: la = ia - ma, lb = ib - mb, and
lc = ic - mc, these mathematical relationships can be expressed as (1)ma + (-1)mb + (0)mc = (ia - ib), (1)ma + (0)mb +
(-1)mc = (ia - ic) and (0)ma + (1)mb + (-1)mc = (ib - ic).
[0147] Figure 15 shows a representation of an [A] [x] = [b] matrix equation for the mathematical relationships of the
example of the three adjacent Type C tokens a, b and c described above, as constrained by the same illumination
constraint: the adjacent Type C tokens a, b and c are at the same illumination. In the matrix equation of figure 15, the
various values for the log (l), in the [b] matrix, are known from the average recorded pixel color values for the constituent
pixels of the adjacent Type C tokens a, b and c, generated by the Type C tokenization block 35 from the image selected
for segregation. The [A] matrix of 0’s, 1’s and -1’s, is defined by the set of equations expressing the selected same
illumination constraint, as described above. The number of rows in the [A] matrix, from top to bottom, corresponds to
the number of actual constraints imposed on the tokens, in this case three, the same illumination between three adjacent
Type C tokens. The number of columns in the [A] matrix, from left to right, corresponds to the number of unknowns to
be solved for, again, in this case, three. Therefore, the values for the material components of each Type C token a, b
and c, in the [x] matrix, can be solved for in the matrix equation. It should be noted that each value is actually a vector
of three values corresponding to the RGB color bands of our example.
[0148] Accordingly, the matrix equation of figure 15, as arranged by the constraint builder 26, is input by the constraint
builder 26 to the solver 30 for an optimized solution for the values of the material components of the adjacent Type C
tokens a, b and c of the selected image. As noted above, in the exemplary GUI embodiment of the present invention, a
user selects one of several mathematical techniques for finding the optimal solution to the system of constraint equations,
[A] [x] = [b]. The CPU 12 configures the solver 30 according to the mathematical operation selected by the user.
[0149] For example, in a standard least squares solver, the matrix equation is restated as \underset{x}{min}(Ax - b)2.
The solver 30 then executes the least squares operation to determine optimized values for each of ma, mb and mc. The
solver 30 can then proceed to generate and display a material image based upon the optimal ma, mb and mc values. In
the material image, the ma, mb and mc values are substituted for the originally recorded RGB values, for each pixel of
the respective tokens. The solver 30 can proceed to also generate an illumination image from the known recorded image
values ia, ib, ic, and the determined ma, mb and mc values, utilizing the model expressed by i = m + l.
[0150] Each of the material and illumination images are displayed on the monitor 20, and can be stored by the service
provider 24, and cross-referenced to the original image file 18.
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[0151] According to a further feature of the present invention, the solver 30 can be configured to introduce factors
including bounds that capture the limits of real world illumination and material phenomena, to keep material/illumination
values determined by the optimization procedures as solutions, [x], to within physically plausible ranges. This can be
implemented, for example, in an iterative technique to introduce additional inequality constraints on out-of-bounds values
in [x], at each iteration, and executed to resolve towards values within the defined bounds. Thus, the above described
least squares technique can be augmented to include minimum and maximum bounds on individual material estimates
(as expressed by the entries of [x]). Moreover, the entries of [x] can be regularized such that the material estimates are
consistent with a priori knowledge of material properties.
[0152] In an exemplary embodiment of the present invention, the matrices used in the least squares solver to specify
the selected constraints, [A] and [b] are subject to the following bounds, expressed by the problem:
a linear least squares formulation : minx : ∑i(Ai

Tx’ - ti)2

subject to: 

where 1 denotes the vector of all ones, αm, the darkest possible material value (for example, a material cannot be darker
than coal), and ωm, the brightest possible material value. The imgj value is the log intensity value at a particular token
j, to provide a constraint based upon the real world observation that a segregated material color cannot be darker than
it appeared in the original image, since illumination can only brighten the apparent color of an observed material.
[0153] In the linear least squares formulation, the unique minimum solution for x’ is the material map that minimizes,
in a linear system expressed by AT Ax’ = AT t, the average squared difference between the target material differences
ti and the estimated differences Ai

Tx’. For example, if the "ith" constraint Ai dictates that two tokens a & b are the same
material, AT Ax’ takes the difference between the values of tokens a & b in x’ and computes the distortion from the target
value ti = 0.
[0154] The inequalities expressed by the "subject to" bounds set forth above, form a feasible set of material solutions
x’ which satisfy the real world constraints of possible maximum and minimum material color values. This differs from the
standard, known least squares solution in that x’, if not further constraint by the "subject to" bounds, could take on a
value at a given location of an image (for example, at a particular pixel or token) that violates the real world observations
of reflectance, yet achieves a more optimal solution for the min x’ formulation.
[0155] in the optimization process executed by the solver 30, whenever any tokens have material color values that
violate the "subject to" inequalities, at a particular iteration of the process, additional temporary constraints are added
that pin the material values in violation, to values that satisfy the bounding conditions. Thus, the original matrices [A]
and [b] are augmented with new matrices specifying the new bounding constraints Abounds and bbounds (as an expression
of the "subject to" bounds) to define a new augmented system of matrix equations [A; Abounds] [x] = [b, bbounds]. The
augmented system of equations can be solved analogously to the original system, for example, using the known least
squares procedure.
[0156] In accordance with the above described bounded feature of the present invention, additional, temporary con-
straints are added whenever color values violate real world phenomena. A re-solving of the augmented equations can
be repeated, as necessary, starting with the original system AT Ax’ = AT t, each time (i.e. the temporary bounding
constraints need not be carried over between iterations), and iteratively solving augmented systems A’T A’x’ = A’T t’ until
the "subject to" bounds are satisfied.
[0157] In accordance with yet another feature of the present invention, an L1, L∞ objective function provides a regu-
larization of the optimized solution by encoding a preference for a small number of material changes. In effect, the L1,
L∞ solver includes the a priori belief that material maps should contain a small number of materials in a figure-of-merit.
In the solver of the system, there is a distinction between the objective function, a formula that assigns a figure-of-merit
to every possible solution, and the algorithm used to find a solution, an optimal value according to a given objective
function. As the problem in our exemplary embodiment is stated as a minimization, minx’ : ∑i(Ai

Tx’ - ti)2, the value an
objective function assigns can be characterized as a "cost."
[0158] In our problem, let x’ be a matrix of a number of rows of tokens and a number of columns of color bands, where
x’c denotes the cth column associated with the cth color band. The least squares objective function, in formula, is aug-
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mented, as follows: 

where γ|γ > 0 governs the trade-off between the cost associated with the least squares term and the Li, L∞ penalty. The
expression ∑k|tk maxc |Ak

Tx’c| accumulates the maximum per-channel absolute difference over all the same material
constraints in [A].
[0159] For example, given a same material constraint between tokens a & b, the L1, L∞ function will only include a
term for a color channel with the largest difference in between xc

a and xc
b over color channel c. In an exemplary

embodiment of the present invention, the optimization procedure, for example as expressed by the objective function
minx’ : ∑c∑i(Ai

Tx’c- tci)2 + γ∑k|tkmaxc|Ak
Tx’c|, is a shrinkage technique. That is, a sequence of least squares problems is

solved in a manner wherein, at each round, constraint targets determined to violate the same material constraint are
shrunk. At the end of the sequence, constraints with a value below a given threshold are culled from the constraint
system, and a new least squares solution is computed. It should be noted that bounds such as the "subject to" bounds
discussed above, can be added to the objective function to provide a bounded L1, L∞ solver.
[0160] Figures 16a, 16b and 16c illustrate examples of a boundary representation spatio-spectral operator. An analysis
of pixels within the illustrated representations provides information on a color ratio between the regions of the image
forming the respective boundary, for use in a boundary representation constraint.
[0161] Referring to figure 16a, there is shown a detail of a boundary 626 between two of the Type B tokens of figure
5d. According to a feature of the present invention, a representation of the boundary 626 is constructed from contiguous
pixels located at the boundary 26 and extending within each of the Type B tokens defining the boundary 626. The pixel
representation is configured to provide samples of pixels relevant to the boundary, for example, pixel arrays comprising
pads 628 within each of the Type B tokens forming the boundary 626, that can be subject to spatio-spectral analysis as
a function of respective color values (for example, R, G, B values) of the pixels provided by the pads 628. The samples
are compared to determine the likelihood of the boundary 626 corresponding to a material change. The CPU 12 is
operated to generate the pad configuration by traversing perimeter pixels of a first Type B token 630, and determining
the distance to a corresponding perimeter pixel of the Type B token 632 on the opposite side of the boundary 626.
[0162] When a closest distance between perimeter pixels is located, that location is then used as a starting point for
generation of the representation. A pixel 634 (size exaggerated in the drawing for illustration purposes) in the exact
middle of the located closest distance between corresponding perimeter pixels of the Type B tokens 630,632 defines a
first segment of the representation. The CPU 12 then traverses pixels in a direction perpendicular to the boundary 626,
within the Type B token 630 for a number of pixels, for example 10-12 pixels, from the pixel 634. At that location, the
CPU 12 identifies one of the pads 628 as an array of pixels, for example, a 3X3 pixel array, around the location 10-12
pixels distant from the pixel 634. The CPU 12 repeats the same operation in respect of the Type B token 632 to define
a pair of pads 628, one on either side of the pixel 634, and one pad 628, each in one of the Type B tokens 630,632,
forming the boundary 626.
[0163] Upon the completion of a first segment comprising a pair of pads 628, the CPU 12 generates a series of
additional pad pairs along the entire length of the subject boundary 626. To that end, the CPU 12 identifies boundary
pixels 636, on either side of the pixel 634, separated from one another by a fixed number of pixels, for example 5 pixel,
and each arranged in the boundary between perimeter pixels of the Type B tokens 630,632. For each boundary pixel
636, the CPU 12 identifies a pair of pads 628, one on either side of the respective pixel 636, and one pad 628, each in
one of the Type B tokens 630,632, forming the boundary 626, in the same manner as executed in respect of the pair of
pads around the pixel 634.
[0164] According to a feature of the present invention, the CPU 12 performs a series of spatio-spectral tests on the
pixels of the representation, including calculations to generate data indicating the likelihood as to whether the boundary
change is a material change.
[0165] A first test comprises a log of gradient match. The test examines a matching between the gradients parallel to
the border on each side (upper and lower sides of the representation shown in figure 16a) of the representation. The
log of the gradients is used to account for materials with different intensities. The CPU 12 operates to:

1. Initialize a sum variable to zero, E=0;
2. For each pad 628

(a) For each side, calculate the difference between the mean color value of the current pad and a next pad
(gradient);
(b) For each side, take the log of the difference (log of gradient);
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(c) Calculate the sum-squared difference between the upper and lower logged differences (with respect to the
upper pads 628 and lower pads 628 of the representation shown in figure 16a);
(d) Add the value to E;

3. Convert E to a mathematical pseudo-likelihood, for example: 

[0166] A next test comprises a matching of the left and right side gradients using dynamic time warping (DTW). In this
test the CPU 12 operates to:

1. For each pad pair of the representation:

(a) For each side, trace a line parallel to the boundary 626, from pad location to pad location (see figure 16b);
(b) For each side, upper and lower, add the points of the respective line to a vector, either V(U) or V(L)(see
figure 16b);

2. Compute the log of the gradient of each of V(U) and V(L), put the results in ∇ V(U and ∇ V(L);
3. Compare ∇ V(L with ∇ V(R) using dynamic time warping to produce an error measure E;
4. Convert Eto a mathematical pseudo-likelihood, for example: 

[0167] In a third test, the CPU 12 executes a log space matching operation:

1. For each side (figure 16a), collect all of the mean color values of the pads 628 into a vector and sort it according
to pixel intensity;
2. For each side, select the 5th percentile and 95th percentile pixels as dark and light examples, respectively;
3. For each side, calculate the Euclidean distance between the log of the bright and dark pixels, D(R) and D(L);
4. Compute the difference between the two distances, E(1)=D(R)-D(L);
5. Convert E(1) to a mathematical pseudo-likelihood, for example: 

6. For each side, calculate the primary eigenvector for the covariance matrix of the border pixels using, for example,
singular value decomposition [SVD];
7. Calculate the dot product of the two primary eigenvectors (one for each side) and put the result in E(2);
8. Convert E(2) into a pseudo-likelihood, for example, use it directly p(2)=E(2);
9. Combine the length and orientation likelihoods to produce a final pseudo-likelihood: L=p(1)p(2).

[0168] In a fourth test, the CPU 12 executes a multi-scale ratio matching for each centipede pad pair. The CPU 12
operates to:

1. For each side (figure 16a), collect all of the mean color values of the pads 628 into a vector, sorted by their order
along the border;
2. Initialize a collection variable P and a counter variable N;.
3. For each pad i:
For each distance d from, for example, 1 to 3:

i. If each band of pad i on one side is brighter than its counterpart on the other side and each band of pad i+d
exhibits the same relationship between sides
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- Calculate the probability p that the reflectance ratio between the upper and lower pads at location i is
equivalent to the reflectance ratio for the upper and lower pads at location i+d using a noise model (for
example, a linear noise model that takes into account a constant term and a term that is linear in image
intensity);

- Add the result p to the collection variation P
- Increment the counter variable N

ii. Otherwise, if the colors at the two pad locations are not similar, for example, have a ratio in some color band
greater than R(m)ax (e.g. 1.3) or less than R(m)in (e.g. 0.77) add 0 to P and increment the counter variable N.;

4. If N>0 calculate a pseudo-likelihood from P and N, for example, L=P/N;
5. Otherwise set the likelihood to zero L=0.

[0169] In a further test, the CPU 12 utilizes a bi-illuminant dichromatic reflection model (BIDR model) of the image.
According to a prediction of the BIDR model, if all the pixels of two Type B tokens are from a single material under a
direct/ambient pair of illuminants, then the pixels will be well represented by a line in RGB space. A pad linearity test
can be devised to determine how well the mean color values of the pads 628 on either side of the representation (figure
16a) approximate a line in RGB space. In the pad linearity test, the CPU 12 operates to:

1. For each side s ∈ {left, right}

(a) Collect the mean color values of the pads 628 into a vector;
(b) Calculate first and second eigenvectors (e(1), e(2)) and eigenvalues of the covariance matrix, for example,
using SVD;
(c) Calculate the ratio of the first to the second eigenvector R=e(1)/e(2), if the second eigenvalue is zero, let
R=20, unless the first eigenvector is also zero, in which case R=0;
(d) Convert the ratio into a mathematical pseudo-likelihood, for example, using: 

where: 

and example values for the constants are α=12 and c=0.5;
(e) Project each pad mean value onto the first eigenvector and calculate the minimum and maximum distance
along the eigenvector, D(min) and D(max);
(f) Divide the distance D(max)-D(min) into K bins (e.g. K=5);
(g) Build a histogram of how many pixels at are at each distance along the first eigenvector;
(h) Count how many bins have no more than C pixels in them (e.g. C=0) and store the result in E(s).

2. Convert the calculated pseudo-likelihoods into a single pseudo-likelihood using, for example: 

[0170] in a sixth test, the CPU 12 performs a test to determine whether the pads 628, on each side of the representation
(figure 16a), corresponds to a reasonable direct/ambient illuminant pair of the bi-illuminant. In this test, the CPU 12
operates to:

1. For each side s ∈ {left, right}

(a) Collect all of the mean color values of the pads 628 into a vector;
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(b) Calculate the primary eigenvector e(1) of the covariance matrix of the pixels, for example, using SVD;
(c) If the elements of e(1) do not all have the same sign, let R(s)=1;
(d) Otherwise, multiply e(1) by either 1 or -1 so that it is all positive and calculate its saturation:
R(s) = max(R, G, B) - min(R, G, B)/max(R, G, B);
(e) Convert R(s) to a pseudo-likelihood using, for example: 

 where example values for the constants are α=25 and M=0.65.

[0171] In a yet further test, the CPU 12 tests for a degree of variation among the mean color values of the pads 628
on each side of the representation (figure 16a). The greater the degree of variation, the greater the amount of information
relevant to the nature of the boundary change. The CPU 12 operates to:

1. For each side, calculate the minimum, maximum and average intensities of the mean color values of the pads 628;
2. For each side, calculate a normalized variation as V(side)=(maximum-minimum)/average;
3. For each side, convert the normalized variation to a pseudo-likelihood using, for example: 

where example values for the constants are α=25 and M=0.4.
4. Combine the pseudo-likelihoods for each side using, for example, 

[0172] A next test comprises a strip token test. The CPU 12 calculates a strip token representation, comprising a
series of strip tokens 642 (see figure 16c), one per boundary pixel 636 and each extending 8-10 pixels from the respective
boundary pixel and 2-4 pixels in width. The CPU 12 analyzes the sharpness of the strip token 642 on each side, where
sharpness is defined as the maximum difference between two adjacent pixels in the strip as a fraction of the maximum
change over the entire strip. The CPU 12 operates to:

1. Generate a set of strips of pixels (e.g. 2 x 8 pixels in size), that are centered along the border and oriented to be
perpendicular to it (see figure 16c);
2. For each strip, calculate its sharpness as the ratio of the maximum difference between any two adjacent pixels
in the strip to the difference between the maximum and minimum intensity pixels within the strip;
3. Calculate the average sharpness over all strips;
4. Return the average sharpness (S) as a pseudo-likelihood.

[0173] In a next strip token test, the CPU 12 performs an analysis of the linearity of each strip.
[0174] The CPU 12 operates to:

1. Generate a set of strips of pixels (e.g. 2 x 8 pixels in size, see figure 16c), that are centered along the border and
oriented to be perpendicular to it;
2. For each strip, calculate its degree of linearity using the ratio of the first and second eigenvalues of the covariance
matrix of the pixels within the strip;
3. For each strip i, convert its linearity l(i) into a pseudo-likelihood using, for example: 

where example values for the constants are α=0.5 and C=10.
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[0175] In yet another strip token test, the CPU 12 examines how the image changes perpendicular to each strip token.
The CPU operates to:

1. Generate a set of N strips of pixels (e.g. 2 x 8 pixels in size) (see figure 16c);
2. Initialize a counter C=0;
3. For each strip, identify the edge pixels on the strip

(a) For each edge pixel p:

i Examine M pixels in a line perpendicular to the long axis of the strip
ii. For each of the M pixels, calculate the similarity to the edge pixel p using a noise model
iii. If any of the M pixels differs from p, consider the strip to have failed the test and increment C;

4. Convert the count of failed strips to a pseudo-likelihood by calculating the percentage that failed L=C/N.

[0176] Upon completion of the set of tests for feature calculation, the CPU 12 executes a computer learning technique
to analyze the mathematically determined pseudo-likelihood data accumulated via the test operations of the CPU 12.
The CPU 12 forms a feature vector from the various likelihoods L determined in the tests. The CPU 12 is then operated
to learn a classifier that can make a decision about whether the feature vector indicates a boundary that is most probably
a material boundary rather than another type of boundary, for example, an illumination edge, depth boundary or simul-
taneous illumination and material change. For example, a neural network with an input for each pseudo-likelihood can
be trained to output a decision. Other example methods include support vector machines [SVM], Bayesian decision
trees, or boosting. Upon a determination of a likelihood that the boundary is a material boundary, the ratio X can be
determined for the colors of the materials of the Type B tokens forming the boundary, and applied as a constraint to
bordering Type C tokens, as described above.
[0177] Figure 17 is a generalized functional block diagram for the service provider 24 and constraint builder 26. To
summarize the above described constraint examples in a general scheme, a selection is made of an image 32, and a
number of constraint generators from a set of constraint generators 1, 2, ...N, (the constraint generator software modules)
for example, by a user, via the GUI. The set of constraint generators 1-N includes the constraints described above, and
any additional constraining relationships developed as a function of spatio-spectral information for an image. The above
described set of constraints is provided as an example. The present invention contemplates any constraining relationship
based upon spatio-spectral operators, that provide a logical deduction regarding material and illumination aspects of an
image, and thus a basis for constructing matrices [A] and [b] to define a set of equations whose optimal solution captures
intrinsic illumination and material components of a given image.
[0178] Likewise, a set of operators 1-M, generated by the Type C tokenization block 35 or the operators block 28,
includes all operators defined in the constraint generator modules 1-N. As shown in figure 17, the service provider 24
provides all of the operators 1-M, as required by the selected constraint generators 1-N and further couples the selected
constraint generators 1-N to a constraint assembly 39 via a logical switch 40 (both configured within the constraint builder
26). In the event any of the operators 1-M for a selected image 32 are not already stored by the service provider 24, the
service provider 24 utilizes the operators block 28 to compute such operators on demand, in the manner described
above. The constraint assembly 39 constructs a separate [A] [x] = [b] matrix for each one of the selected constraint
generators, as a function of the operators and the constraining relationships defined in the respective constraint generators
1-N. In each case, the [A] [x] = [b] matrix is constructed in a similar manner as described above for the same illumination
example.
[0179] Upon completion of the construction of the system of equations [A]i [x] = [b]i, for each of the selected constraint
generators, i = {1, 2, ...N}, the constraint assembly 39 concatenates the constituent matrices [A]i, [b]i, from each constraint
generator. Since each of the concatenated equations may contain a different subset of the unknowns, [x], the assembly
is performed such that corresponding columns of individual matrices [A]i, that constrain particular unknowns in [x], are
aligned. The concatenated matrices, [A] [x] = [b], are then input to the solver 30, for solution of the unknowns in the
complete [x] vector, pursuant to the selected optimization procedure, for output of intrinsic images 34. The individual
constraints within the concatenated matrices, [A] [x] = [b], can be weighted relative to one another as a function of factors
such as perceived importance of the respective constraint, strength or empirically determined confidence level.
[0180] The above described example of a same illumination constraint utilizes Type C token and Type B token spatio-
spectral operators. These token operators provide an excellent representation of images that include large surface areas
of a single material, such as are often depicted in images including man-made objects. However, in many natural scenes
there are often large areas of highly textured regions, such as sand, grass, stones, foliage, and so on. As noted above,
identification of Type B tokens using Type C tokens, can be difficult in an image texture. According to a further feature
of the present invention, a texton histogram operator provides a mechanism for capturing statistically uniform spatial
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variations of textured regions in a manner that is useful in a constraint based optimization, for example, as expressed
by the [A] [x] = [b] matrix equation.
[0181] Thus, according to this feature of the present invention, rather than generating Type C tokens in textured regions
of an image, from intensity histograms, for use in identifying Type B tokens, as described above, texture tokens are
generated as a species of Type B tokens, for use in a constraint. In an exemplary embodiment of the texton histogram
operator, the operators block 28 converts each pixel of the image (or pixels of those regions of an image identified as
comprising a texture) from the recorded color band representation of the respective image file 18, such as, for example,
RGB color band values, to a two band representation wherein the two bands comprise a texton label and a texton
histogram label. The two band representations for the pixels are then used to identify texture tokens, as will appear.
[0182] A texton label for each pixel is generated through execution of a clustering process. A texture can be charac-
terized by a texture primitive (for example, in a grass texture, a single blade of grass), and the spatial distribution of the
primitive. A texton analysis is an analytical method for characterizing a texture primitive, for example via a clustering
algorithm. Clustering is a process for locating centers of natural groups or clusters in data. In an exemplary embodiment
of the present invention, the data comprises pixel patches selected from among the pixels of an image being segregated
into material and illumination components. For example, 3 X 3 pixel patches are clustered into K different groups, with
each group being assigned a designating number (1,2,3, ...K). The texton label for each pixel of the 3 X 3 array is the
group number of the group to which the respective patch was assigned during the clustering process.
[0183] To expedite execution of a clustering algorithm, random samples of 3 X 3 patches can be selected throughout
the image, or region of the image identified as comprising a texture, for processing in a clustering algorithm. After
execution of the clustering algorithm by the CPU 12 (operating as the operators block 28), each 3 X 3 patch of the image
is assigned the texton label of the closest one of the K group centers identified in the clustering process, as executed
in respect of the selected random samples.
[0184] To advantage, prior to execution of a clustering algorithm, the pixels of the image are subject to an image
intensity normalization. In a clustering process utilizing an intensity-based distance matrix, dark areas of an image may
be placed in a single group, resulting in an under representation of groups for shadowed areas of a textured region of
an image. A normalization of the image provides a more accurate texton representation for texture regions under varying
illumination. A normalized intensity for a pixel can be expressed by: 

where inorm(n,m) is the normalized intensity for a pixel p(n,m), i(n,m) is the intensity for the pixel p(n,m), as recorded in
the image file 18, and ib(n,m) is a blurred or low passed filtered version of the pixel p(n,m). For example, a 10 pixel blur
radius can be used in any standard blurring function.
[0185] Clustering can be executed according to any known clustering algorithm, such as, for example, K means
clustering where there are K clusters or groups Si, i = 1,2, ...K, and mi is the mean point or center point of all the data
points xj ∈ Si.. In our example, each xj comprises a selected 3 X 3 pixel patch arranged as a 9 X 1 vector of the nine
pixels in the patch (27 elements total, including the RGB values of each of the nine pixels of the vector). As noted above,
each mean point mi is assigned a texton label, 1, 2, 3 ...K, that becomes the texton label for any pixel of a 3 X 3 patch
clustered into the group for which the respective mean point is the center.
[0186] According to an exemplary embodiment of the present invention, the CPU 12 executes the algorithm by initially
partitioning the selected 9 X 1 vectors, representing 3 X 3 pixel patches of the image, into K initial groups Si. The CPU
12 then calculates a center point mi, for each group Si, utilizing an intensity-based distance matrix. After determining a
center point mi, for each group Si, the CPU 12 associates each 9 X 1 vector to the closest center point mi, changing
groups if necessary. Then the CPU 12 recalculates the center points mi. The CPU 12 executes iterations of the steps of
associating each 9 X 1 vector to the closest center point mi, and recalculating the center points mi, until convergence.
Convergence is when there is no need to change the group for any of the 9 X 1 vectors. At that point, the CPU 12 assigns
the group number for the respective center point mi, as the texton label for the pixels of each vector in that group.
[0187] As noted above, pixels of 3 X 3 patches not selected as samples for clustering are assigned the texton label
of the closest one of the K group centers mi, identified in the clustering process, as executed in respect of the selected
random samples. A texton label map is stored by the service provider 24, and is coextensive with the pixel array of figure
2. In the texton label map, for each pixel location, there is an indication of the respective texton label.
[0188] Upon completion of the texton label assignment for pixels of the image, the CPU 12 operates to generate a
texton histogram for each pixel to provide a representation of the spatial variation of texton representations within a
textured region of the image. To that end, the CPU 12 accesses the texton label map. At each pixel location within the
texton label map, a pixel patch of, for example, 21 X 21 pixels, is set up around the current location. The 21 X 21 patch
size is far greater than the 3 X 3 patch sized used to generate the texton representations, so as to capture the spatial
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variations of the texture. A texton histogram is then generated for the pixel location at the center of the 21 X 21 patch,
in a similar manner as the intensity histogram described above. However, rather than bins based upon color band values,
in the texton histogram, there is a bin for each texton label value, 1,2, 3 ...K. The count for each bin corresponds to the
number of pixels in the 21 X 21 patch having the texton label value for the respective bin.
[0189] When a texton histogram is generated for each pixel of the texton label map, the CPU 12 executes a second
clustering step. In the second clustering step, the texton histograms are clustered using spectral clustering. Spectral
clustering techniques use a spectrum of a similarity matrix of data of interest, (in our example, the texton histograms)
to reduce the dimensionality for clustering in fewer dimensions. A similarity matrix for a given set of data points A can
be defined as a matrix S where Sij represents a measure of the similarity between points i, j ∈ A. In our example,
eigenvectors of the Laplacian are clustered using a mean shift. The distance metric is a chi-squared distance of the
histograms.
[0190] A texton histogram label (1,2 ...) is assigned to each cluster group defined by the clustering procedure. For
each pixel of the texton label map, the texton histogram label for the cluster group corresponding to a texton histogram
that is nearest the texton histogram for the respective pixel, is assigned to that pixel. Distance is defined as the chi-
squared histogram distance. Upon completion of the assignment of a texton histogram label to each pixel, each pixel is
now represented by a two band, texton label, texton histogram label representation.
[0191] According to a feature of the present invention, the two band, texton label, texton histogram label representations
for pixels of an image file 18 can be utilized in a constraint for construction of an [A]i [x] = [b]i constituent within the
concatenated matrices, [A] [x] = [b]. For example, it can be assumed that a region of an image wherein contiguous pixels
within the region all have the same two band, texton label, texton histogram label representation, comprises a region of
the same mean material of a texture depicted in the image. Such a region can be referred to as a texture token, a species
of a Type B token. Thus, a constraint can be imposed that all Type C tokens within the same texture token are of the
same mean material. In this constraint, the Type C tokens are the Type C tokens generated from the color band values
of the constituent pixels by the Type C tokenization block 35.
[0192] While the above exemplary embodiment of the present invention has been described with a user selecting
constraint generators and mathematical operations via a GUI, the image segregation processing can be done in other
operating modes, such as automatically, with images, constraint generators and mathematical operations being auto-
matically selected, for example, as a function of image parameters.
[0193] Referring now to figure 18, there is shown a block diagram for a test bed for testing an image transform method
such as the image segregation system architecture of figure 3. The test bed is utilized to test image segregation operations
in order to ascertain and set automatic selections. The input 32 comprises data and parameters, such as an image file
18 as data and its associated parameter data file. A transform component 50, in our example, comprises the image
segregation system architecture of figure 3, which operates to transform the data by generating intrinsic images corre-
sponding to the image of the input image file 18. The intrinsic images include a material image and an illumination image,
as described above.
[0194] According to a feature of the present invention, the generated intrinsic images are input to a test/application
module 52 that utilizes the intrinsic images as an input. The test/application module 52 in our example is an object
recognition method. The object recognition method can comprise any known object recognition method such as a feature-
based learning framework, an appearance-based learning framework, shape-based analysis and classification, and
model-based object recognition. In a test sequence, a gallery 54 comprising a set of images of known objects is input
together with a probe 56, which comprises the image file 18 input to the transform component. The object recognition
method is performed on each of the probe and the intrinsic images, to ascertain, for example, an improvement in
recognition ability as between an image and its corresponding intrinsic images.
[0195] All test results are input to an analysis module 58 that operates to compile all object recognition results for a
series of probes and corresponding intrinsic images. The compilation is published by publish module 60, and also output
to a feedback loop 62. The feedback loop 62 controls each of the transform component 50 and test/application modules
52 to perform operations on a same image under differing selections of constraint generators, mathematical optimization
operations and variable parameters.
[0196] For example, in our exemplary embodiment of a filter response to identify Type B tokens, the variable parameters
to be used in a segregation operation of the transform component 50 include the σ factor, patch size and shape, a
definition of a low filter response and a definition of sufficiently overlapping. Different combinations of parameters yield
differing results. One set of parameters can capture some portions of an image well, with well defined Type B tokens,
but leave other portions of the image in many small unconnected patches, while another set of parameters might capture
different parts of the image well. Thus, by varying values within the set of parameters, several sets of segmentation
results can be obtained to provide more robust overall result for analysis and comparison. Moreover, the particular object
recognition method utilized can also be varied in the test/application module 52 for analysis of various object recognition
method/ parameter combinations and their impact on results. Domain knowledge can also be correlated to different
constraints and optimization processes to ascertain automatic settings for certain types of images. For example, for an
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image depicting an exterior scene with extensive green lawns taken in winter at 3:00 PM, operations can be performed
by each of the transform component 50 and test/application module 52, with various different constraints, optimization
processes, variable parameters, object recognition methods and so on, and analyzed to determine empirically, a best
setting for such images. To that end, a known learning algorithm can be implemented in the feedback loop 62. For a
selected set of different constraints, the weight of each can be varied to ascertain an optimal weight for each selected
constraint.
[0197] In the preceding specification, the invention has been described with reference to specific exemplary embod-
iments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto
without departing from the scope of the invention as set forth in the claims that follow. The specification and drawings
are accordingly to be regarded in an illustrative manner rather than a restrictive sense.
[0198] An automated, computerized method for processing an image, comprising the steps of
providing an image;
organizing spatio-spectral information for the image in a matrix equation expressed by: 

wherein [A] expresses values determined by a constraining relationship imposed upon the spatio-spectral informa-
tion, [b] expresses recorded information for the image, and [x] expresses an unknown material/illumination component
of the image; and
utilizing the matrix equation in an image segregation operation.

[0199] The spatio-spectral information includes a token. Additionally, the spatio-spectral information includes a log
chromaticity representation. Furthermore the spatio-spectral information includes an X-junction. Another possibility is
that the spatio-spectral information includes a BIDR model representation. The spatio-spectral information includes a
boundary representation. The spatio-spectral information can include a texton histogram based pixel representation.
[0200] The constraining relationship comprises one of an absolute material color constraint, a same material constraint
and a relative reflectance constraint.
[0201] According to a further embodiment, an automated, computerized method for processing an image, comprising
the steps of:

providing an image;
organizing spatio-spectral operators as a function of a BIDR model representation of the image; and
utilizing a result of the organizing step to identify material and illumination aspects of the image for image segregation.

[0202] The step of organizing spatio-spectral operators as a function of a BIDR model representation of the image is
carried out by constraining tokens representing regions of robust similar color to a BIDR model representation of the image.
[0203] The step of constraining tokens representing regions of robust similar color to a BIDR model representation of
the image is carried out by constraining the tokens representing regions of robust similar color relative to a linear token.
[0204] According to a further embodiment, an automated, computerized method for processing an image, comprising
the steps of:

providing an image;
organizing spatio-spectral operators as a function of tokens representing discrete materials depicted in the image
and tokens representing regions of robust similar color; and
utilizing a result of the organizing step to identify material and illumination aspects of the image for image segregation.

[0205] The step of organizing spatio-spectral operators as a function of tokens representing discrete materials depicted
in the image and tokens representing regions of robust similar color is carried out by constraining the tokens to a constraint
selected from the group consisting of an absolute material color constraint, a same material constraint and a relative
reflectance constraint.
[0206] An automated, computerized method for processing an image, comprising the steps of:

providing an image file depicting an image, in a computer memory;

identifying information in the image file relevant to a logical deduction regarding material and illumination aspects
of an image;



EP 2 356 614 B1

30

5

10

15

20

25

30

35

40

45

50

55

defining a constraint as a function of the information; and

utilizing the constraint in an image segregation operation.

[0207] An automated, computerized method for processing an image, comprising the steps of:

providing an image file depicting an image, in a computer memory;

organizing information for the image file relevant to a logical deduction regarding material and illumination aspects
of an image, in a matrix equation expressed by: 

wherein [A] expresses values determined by a constraining relationship imposed upon the information relevant to
a logical deduction regarding material and illumination aspects of an image, [b] expresses information obtained form
the image file, in the computer memory, and [x] expresses an unknown material/illumination component of the image;
and utilizing the matrix equation in an image segregation operation.

[0208] The information for the image file relevant to a logical deduction regarding material and illumination aspects of
an image is selected from information relevant to spatio-spectral aspects of an image.
[0209] A computer system which comprises: a CPU; and a memory storing an image file defining an image; the CPU
being arranged and configured to execute a routine to organize information for the image file relevant to a logical deduction
regarding material and illumination aspects of an image, in a matrix equation expressed by: [A] [x] = [b], wherein [A]
expresses values determined by a constraining relationship imposed upon the information relevant to a logical deduction
regarding material and illumination aspects of an image, [b] expresses information obtained form the image file, in the
computer memory, and [x] expresses an unknown material/illumination component of the image and utilize the matrix
equation in an image segregation operation.
[0210] A computer program product, disposed on a computer readable media, the product including computer exe-
cutable process steps operable to control a computer to: provide an image file depicting an image, in a computer memory;
organize information for the image file relevant to a logical deduction regarding material and illumination aspects of an
image, in a matrix equation expressed by: 

wherein [A] expresses values determined by a constraining relationship imposed upon the information relevant to a
logical deduction regarding material and illumination aspects of an image, [b] expresses information obtained form the
image file, in the computer memory, and [x] expresses an unknown material/illumination component of the image; and
utilize the matrix equation in an image segregation operation.
[0211] The information for the image file relevant to a logical deduction regarding material and illumination aspects of
an image is selected from information relevant to spatio-spectral aspects of an image

Claims

1. An automated, computerized method for processing an image (32), comprising the steps of:

providing a multi-band color image (32);
generating spatio-spectral information for the image (32), the spatio-spectral information given by spectral
relationships, in terms of color bands, among contiguous pixels of the image, wherein these spectral relationships
are relevant to a material and illumination characteristic of the image (32), and the spatial extent of the pixel
spectral relationships, and expressing the spatio-spectral information as spatio-spectral operators (28), spatio-
spectral operators (28) being a mathematical representation of the spatio-spectral information;
defining at least one constraint, each constraint expressed as a constraining relationship imposed on a set of
the spatio-spectral operators (28) corresponding to the constraint as part of the definition of the constraint;
expressing the at least one constraint as a matrix equation Ax=b, where A is a matrix of values that are to be
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satisfied by the definitions of the operators (28) and the constraining relationships, each row of the matrix A
corresponding to one constraint, b is a matrix of values observed in the image, and x is a matrix to be solved
for, representing one of an illumination or material component of the image,
and performing an image segregation operation, comprising an optimized solution of the matrix equation, to
identify a material image and an illumination image, each corresponding to the image (32), and wherein the
material image depicts the material component of the image and the illumination image depicts the illumination
component of the image.

2. The method of claim 1 wherein the spatio-spectral information includes a token, a token being a connected region
of an image wherein the pixels of the region are related to one another in a manner relevant to identification of image
features and characteristics.

3. The method of claim 1 wherein the spatio-spectral information includes a log chromaticity representation.

4. The method of claim 1 wherein the spatio-spectral information includes an X-junction, an X-junction being an area
of the image where a material edge and an illumination boundary cross one another.

5. The method of claim 1 wherein the spatio-spectral information includes a bi-illuminant dichromatic reflection (BIDR)
model representation, the model taking into account both an incident illuminant and an ambient illuminant.

6. The method of claim 1 wherein the spatio-spectral information includes a boundary representation.

7. The method of claim 1 wherein the spatio-spectral information includes a texton histogram based pixel representation,
wherein a given pixel is represented by a histogram which is obtained by generating, for each color band, a histogram
of color values of pixels in a neighborhood of the given pixel, each such histogram having the same number of bins,
and concatenating these histograms into a single histogram.

8. The method of claim 1 wherein the constraint comprises one of an absolute material color constraint, which constrains
the material at a particular location of the image (32) to be a certain color, a same material constraint, which constrains
spectral operators (28) to be of the same material, and a relative reflectance constraint, which constrains spectral
operators (28) to have a similarity of reflectance characteristics.

9. A computer system (10) which comprises: a CPU (12); and a memory (16) storing an image file (18) defining an
image; the CPU (12) being arranged and configured to execute a routine to perform the method of one of the claims
1 to 8.

10. A computer program product, disposed on a computer readable media, the product including computer executable
process steps operable to control a computer to perform the method of one of the claims 1 to 8.

Patentansprüche

1. Automatisiertes, computerisiertes Verfahren zur Verarbeitung eines Bildes (32), die folgenden Schritte umfassend:

Bereitstellen eines mehrbandigen Farbbildes (32);
Erzeugen von räumlich-spektralen Informationen für das Bild (32), wobei die räumlich-spektralen Informationen
durch spektrale Beziehungen in Bezug auf Farbbänder unter zusammenhängenden Pixeln des Bildes gegeben
sind, wobei diese spektralen Beziehungen für eine Material- und Beleuchtungseigenschaft des Bildes (32) und
das räumliche Ausmaß der spektralen Pixelbeziehungen relevant sind, und Ausdrücken der räumlich-spektralen
Informationen als räumlich-spektrale Operatoren (28), wobei die räumlich-spektralen Operatoren (28) eine ma-
thematische Repräsentation der räumlich-spektralen Informationen sind;
Definieren von zumindest einer Einschränkung, wobei jede Einschränkung als eine einschränkende Beziehung
ausgedrückt ist, die einem Satz der räumlich-spektralen Operatoren (28) auferlegt ist, entsprechend der Ein-
schränkung als Teil der Definition der Einschränkung;
Ausdrücken der zumindest einen Einschränkung als eine Matrixgleichung Ax=b, wobei A eine Matrix mit Werten
ist, die durch die Definitionen der Operatoren (28) und der einschränkenden Beziehungen zu erfüllen sind,
wobei jede Reihe der Matrix A einer Einschränkung entspricht, b eine Matrix mit im Bild beobachteten Werten
ist und x eine zu lösende Matrix ist, die eine von einer Beleuchtungs- oder Materialkomponente des Bildes
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repräsentiert, und
Durchführen eines Bildsegregationsvorgangs, umfassend eine optimierte Lösung der Matrixgleichung, um ein
Materialbild und ein Beleuchtungsbild zu identifizieren, das jeweils dem Bild (32) entspricht, und wobei das
Materialbild die Materialkomponente des Bildes darstellt und das Beleuchtungsbild die Beleuchtungskompo-
nente des Bildes darstellt.

2. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen einen Token beinhalten, wobei es sich
bei einem Token um einen verbundenen Bereich eines Bildes handelt, wobei die Pixel des Bereichs auf eine Weise
miteinander verbunden sind, die für die Identifizierung von Bildmerkmalen und -eigenschaften wichtig ist.

3. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen eine Log-Chromatizitätsrepräsentation
beinhalten.

4. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen eine X-Kreuzung beinhalten, wobei eine
X-Kreuzung ein Bereich des Bildes ist, in dem ein Materialrand und eine Beleuchtungsgrenze einander kreuzen.

5. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen eine dichromatische Doppelleuchtmittel-
Reflexions-(BIDR)-Modellrepräsentation beinhalten, wobei das Modell sowohl ein einfallendes Leuchtmittel als auch
ein Umgebungsleuchtmittel berücksichtigt.

6. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen eine Grenzenrepräsentation beinhalten.

7. Verfahren nach Anspruch 1, wobei die räumlich-spektralen Informationen eine Texton-Histogramm-basierte Pixel-
repräsentation beinhalten, wobei ein gegebenes Pixel durch ein Histogramm repräsentiert wird, das erhalten wird,
indem für jedes Farbband ein Histogramm an Farbwerten von Pixeln in einer Nachbarschaft des gegebenen Pixels
erzeugt wird, wobei jedes solche Histogramm die gleiche Anzahl an Bins aufweist, und diese Histogramme zu einem
einzigen Histogramm verknüpft werden.

8. Verfahren nach Anspruch 1, wobei die Einschränkung eines von einer absoluten Materialfarbeinschränkung, die
das Material an einer bestimmten Stelle des Bildes (32) auf eine bestimmte Farbe einschränkt, eine Einschränkung
des gleichen Materials, die spektrale Operatoren (28) auf das gleiche Material einschränkt, und eine Einschränkung
der relativen Reflexion, die spektrale Operatoren (28) auf eine Ähnlichkeit an Reflexionseigenschaften einschränkt,
umfasst.

9. Computersystem (10), das Folgendes umfasst: eine CPU (12); und einen Speicher (16), der eine Bilddatei (18)
speichert, die ein Bild definiert; wobei die CPU (12) angeordnet und konfiguriert ist, um eine Routine auszuführen,
um das Verfahren nach einem der Ansprüche 1 bis 8 durchzuführen.

10. Computerprogrammprodukt, das in einem computerlesbaren Medium angeordnet ist, wobei das Produkt compute-
rausführbare Prozessschritte beinhaltet, die bedienbar sind, um einen Computer zu steuern, so dass er das Verfahren
nach einem der Ansprüche 1 bis 8 durchführt.

Revendications

1. Procédé informatisé et automatisé de traitement d’une image (32), comprenant les étapes de :

fourniture d’une image couleur multibande (32) ;
génération d’informations spatiospectrales pour l’image (32), les informations spatiospectrales étant données
par des relations spectrales, en termes de bandes de couleur, parmi des pixels contigus de l’image, dans lequel
ces relations spectrales concernent une caractéristique de matériau et d’illumination de l’image (32), et l’étendue
spatiale des relations spectrales de pixel, et expression des informations spatiospectrales en tant qu’opérateurs
spatiospectraux (28), les opérateurs spatiospectraux (28) étant une représentation mathématique des informa-
tions spatiospectrales ;
définition d’au moins une contrainte, chaque contrainte étant exprimée en tant que relation contraignante im-
posée sur un ensemble des opérateurs spatiospectraux (28) correspondant à la contrainte dans le cadre de la
définition de la contrainte ;
expression de l’au moins une contrainte en tant qu’équation de matrice Ax = b, où A est une matrice de valeurs
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qui doivent être satisfaites par les définitions des opérateurs (28) et les relations contraignantes, chaque ligne
de la matrice A correspondant à une contrainte, b est une matrice de valeurs observées dans l’image, et x est
une matrice à résoudre, représentant l’un d’un composant d’illumination ou de matériau de l’image,
et réalisation d’une opération de ségrégation d’image, comprenant une solution optimisée de l’équation de
matrice, pour identifier une image de matériau et une image d’illumination, correspondant chacune à l’image
(32), et dans lequel l’image de matériau représente le composant de matériau de l’image et l’image d’illumination
représente le composant d’illumination de l’image.

2. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent un token, un token étant
une région connectée d’une image dans laquelle les pixels de la région sont liés les uns aux autres d’une manière
concernant l’identification de particularités et de caractéristiques d’image.

3. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent une représentation de
chromaticité logarithmique.

4. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent une jonction X, une jonction
X étant une zone de l’image où un bord de matériau et une limite d’illumination se croisent l’un l’autre.

5. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent une représentation de
modèle de réflexion dichromatique à deux illuminants (BIDR), le modèle prenant en compte à la fois un illuminant
incident et un illuminant ambiant.

6. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent une représentation de limite.

7. Procédé selon la revendication 1, dans lequel les informations spatiospectrales incluent une représentation de pixel
par histogramme de textons, dans lequel un pixel donné est représenté par un histogramme qui est obtenu en
générant, pour chaque bande de couleur, un histogramme de valeurs de couleur de pixels dans un voisinage du
pixel donné, un tel histogramme ayant le même nombre de compartiments (bins), et en concaténant ces histogram-
mes en un seul histogramme.

8. Procédé selon la revendication 1, dans lequel la contrainte comprend l’une d’une contrainte de couleur de matériau
absolue, qui contraint le matériau en un emplacement particulier de l’image (32) à avoir une certaine couleur, une
contrainte de matériau identique, qui contraint des opérateurs spatiospectraux (28) à être du même matériau, et
une contrainte de réflectance relative, qui contraint des opérateurs spatiospectraux (28) à avoir une similitude de
caractéristiques de réflectance.

9. Système d’ordinateur (10) qui comprend: une CPU (12); et une mémoire (16) stockant un fichier d’image (18)
définissant une image, la CPU (12) étant agencée et configurée pour exécuter une routine afin d’exécuter le procédé
de l’une des revendications 1 à 8.

10. Produit programme d’ordinateur, disposé sur un support lisible par ordinateur, le produit comportant des étapes de
procédé exécutables par ordinateur opérationnelles pour commander à un ordinateur de réaliser le procédé de l’une
des revendications 1 à 8.
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