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Description

Background of the Invention

[0001] A challenge in the utilization of computers to accurately and correctly perform operations relating to images is
the development of algorithms that truly reflect and represent physical phenomena occurring in the visual world. For
example, the ability of a computer to correctly and accurately distinguish between a shadow and a material object edge
within an image has been a persistent challenge to scientists. An early and conventional approach to object edge
detection involves an analysis of brightness boundaries in an image. In the analysis it is assumed that a boundary caused
by a material object will be sharp, while a boundary caused by a shadow will be soft or gradual due to the penumbra
effect of shadows. While this approach can be implemented by algorithms that can be accurately executed by a computer,
the results will often be incorrect. In the real world there are many instances wherein shadows form sharp boundaries,
and conversely, material object edges form soft boundaries. Thus, when utilizing conventional techniques for shadow
and object edge recognition, there are significant possibilities for false positives and false negatives for shadow recog-
nition. That is, for example, a material edge that imitates a shadow and is thus identified incorrectly by a computer as a
shadow or a sharp shadow boundary that is incorrectly interpreted as an object boundary. Accordingly, there is a
persistent need for the development of accurate and correct techniques that can be utilized in the operation of computers
relating to images, to, for example, identify material and illumination characteristics of the image.

[0002] The article "Learning Face Appearance under Different Lighting Conditions" by Brendan Moore et al. in Bio-
metrics: Theory, Applications and Systems, 2008, BTAS 2008, IEEE, Piscataway, NJ, USA, discusses a machine learning
approach for estimating intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image domain.
An observed image is decomposed into its intrinsic components using multi-scale patches of the observed image from
a three-level Laplacian pyramid.

[0003] The article "Estimating Intrinsic Component Images using Non-Linear Regression™ by Marshall F Tappen et al,
Conference on Computer Vision and Pattern Recognition 2006, vol 2, pp. 1992 - 1999, IEEE, Piscataway, NJ, USA
presents a method for estimating intrinsic component images from a single image based on estimators predicting filtered
versions of the image. The estimators are used to obtain a set of local linear constraints from local image data.

Summary of the Invention

[0004] The present invention provides a method and system comprising image processing techniques that utilize
spatio-spectral information relevant to an image, derived from at least one representation from a set of selectively varied
representations of the image, for example, multi-resolutions such as a scale-spaced pyramid of representations, to
accurately and correctly identify illumination and material aspects of the image.

[0005] In a first exemplary embodiment of the present invention, an automated, computerized method according to
claim 1 is provided for processing an image. According to a feature of the present invention, the method comprises the
steps of providing an image file depicting the image, in a computer memory, forming a set of selectively varied repre-
sentations of the image file and performing an image segregation operation on at least one preselected representation
of the image of the image file, to generate intrinsic images corresponding to the image. According to a feature of the
exemplary embodiment of the present invention, the selectively varied representations comprise multi-resolution repre-
sentations such as a scale-spaced pyramid of representations. In a further feature of the exemplary embodiment of the
present invention, the intrinsic images comprise a material image and an illumination image.

[0006] In a second exemplary embodiment of the present invention, a computer system according to claim 10 is
provided. The computer system comprises a CPU and a memory storing an image file containing an image. According
to a feature of the present invention, the CPU is arranged and configured to execute a routine to form a set of selectively
varied representations of the image and to perform an image segregation operation on at least one preselected repre-
sentation of the image of the image file, to generate intrinsic images corresponding to the image.

[0007] In accordance with yet further embodiments of the present invention, computer systems are provided, which
include one or more computers configured (e.g., programmed) to perform the methods described above. In accordance
with other embodiments of the present invention, computer readable media are provided which have stored thereon
computer executable process steps operable to control a computer(s) to implement the embodiments described above.
The automated, computerized methods can be performed by a digital computer, analog computer, optical sensor, state
machine, sequencer or any device or apparatus that can be designed or programed to carry out the steps of the methods
of the present invention.

Brief Description of the Drawings

[0008]
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Figure 1 is a block diagram of a computer system arranged and configured to perform operations related to images.
Figure 2a shows an n X m pixel array image file for an image stored in the computer system of figure 1.

Figure 2b is an 11 X 11 pixel array formed from the upper left hand corner of the image file of figure 2a, for use in
the generation of an histogram, according to a feature of the present invention.

Figure 2c shows a diagram of the histogram generated from the 11 X 11 pixel array of figure 2b.
Figure 3a is a data flow block diagram for an image segregation operation performed according to an exemplary
embodiment of the present invention including a set of selectively varied representations of the image of the image

file of figure 2a.

Figure 3b shows a graphic representation of a scale-spaced Gaussian pyramidas the set of selectively varied
representations of figure 3a.

Figure 4 is a functional block diagram for an image segregation system architecture for performing the data flow of
figure 3a, implemented in the computer system of figure 1, according to a feature of the present invention.

Figure 5 shows a graphical user interface for use in connection with an implementation of the image segregation
system architecture feature of the present invention.

Figure 6a is a flow chart for identifying Type C token regions in the image file of figure 2a, according to a feature of
the present invention.

Figure 6b is an original image used as an example in the identification of Type C tokens.
Figure 6¢c shows Type C token regions in the image of figure 6b.

Figure 6d shows Type B tokens, generated from the Type C tokens of figure 6¢, according to a feature of the present
invention.

Figure 7 is a flow chart for a routine to test Type C tokens identified by the routine of the flow chart of figure 6a,
according to a feature of the present invention.

Figure 8 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technique, according to a
feature of the present invention.

Figure 9 is a flow chart for creating a token graph, containing token map information, according to a feature of the
present invention.

Figure 10 is a flow chart for constructing Type B tokens via an adjacent planar token merging technigue, according
to a feature of the present invention.

Figure 11 is a flow chart for generating Type C tokens via a local token analysis technique, according to a feature
of the present invention.

Figure 12 is a flow chart for constructing Type B tokens from Type C tokens generated via the local token analysis
technique of figure 11, according to a feature of the present invention.

Figure 13 is a representation of an [A] [X] = [b] matrix relationship according to a feature of the present invention.

Figure 14 is a functional block diagram for a service provider component for use in the image segregation system
architecture of figure 4.

Detailed Description of the Preferred Embodiments

[0009] Referring now to the drawings, and initially to figure 1, there is shown a block diagram of a computer system
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10 arranged and configured to perform operations related to images. A CPU 12 is coupled to a device such as, for
example, a digital camera 14 via, for example, a USB port. The digital camera 14 operates to download images stored
locally on the camera 14, to the CPU 12. The CPU 12 stores the downloaded images in a memory 16 as image files 18.
The image files 18 can be accessed by the CPU 12 for display an a monitor 20, or for print out on a printer 22.

[0010] Alternatively, the CPU 12 can be implemented as a microprocessor embedded in a device such as, forexample,
the digital camera 14 or a robot. The CPU 12 can also be equipped with a real time operating system for real time
operations related to images, in connection with, for example, a robotic operation or an interactive operation with a user.
[0011] As shown in figure 2a, each image file 18 comprises an n X m pixel array. Each pixel, p, is a picture element
corresponding to a discrete portion of the overall image. All of the pixels together define the image represented by the
image file 18. Each pixel comprises a digital value corresponding to a set of color bands, for example, red, green and
blue color components (RGB) of the picture element. The presentinvention is applicable to any multi-band image, where
each band corresponds to a piece of the electro-magnetic spectrum. The pixel array includes n rows of m columns each,
starting with the pixel p (1,1) and ending with the pixel p(n, m). When displaying or printing an image, the CPU 12 retrieves
the corresponding image file 18 from the memory 16, and operates the monitor 20 or printer 22, as the case may be,
as a function of the digital values of the pixels in the image file 18, as is generally known.

[0012] According to a feature of the present invention, in an image process, the CPU 12 operates to analyze and
process information, for example, the RGB values of the pixels of an image stored in an image file 18, to achieve various
objectives, such as, for example, a segregation of illumination and material aspects of a scene depicted in the image of
an image file 18, to generate corresponding intrinsic images. The intrinsic images can include, for example, a material
image and an illumination image.

[0013] To that end, figure 3a shows a data flow diagram for an image segregation operation performed according to
an exemplary embodiment of the present invention. In block 1000, an image file 18 is selected and input to the CPU 12.
In block 1002, the CPU 12 operates to form a set of selectively varied representations of the image, depicted in image
files 18a, 18b, ...18n, from the selected image file 18. The variations among the representations can be based upon any
preselected spacial, spectral and/or temporal groupings of the original image. The variations are selected so as to provide
image representations most suitable for efficient and accurate analysis of illumination and material aspects of the image.
[0014] In one preferred embodiment of the present invention, computer operation for illumination and material image
segregation can be performed at a relatively coarse scale representation of the image, and then used to constrain a
solution at a relatively finer scale resolution. By enforcing a segregation that is consistent across different scales of
resolution, performance of a segregation operation is not only more speedy and efficient, but also more accurate.
[0015] In another preferred embodiment, a segregation of illumination and material aspects of the image is selectively
divided among representations at differing scales of image resolution. Different features of a scene depicted in an image
can have different intrinsic scales. For example, edges in an image have an intrinsic scale most effectively analyzed at
a fine scale of resolution, while non-edged regions, such as regions of uniform material, can be accurately analyzed at
relatively coarse scales of resolution. Thus, an image is divided by edge and non-edge regions, segregating the edge
regions at a fine scale of resolution, and the remaining non-edge regions at a relatively coarse scale of resolution. More
generally, pixels of the image (or other preselected regions of the image) can each be divided according to the intrinsic
scale of the respective pixel, and processed at a representation of the image at an appropriate scale. The division of
segregation operations in this manner provides a sequence of simple solution systems, rather than one relatively large
complex system to solve.

[0016] Accordingly, for example, in one exemplary embodiment of the present invention, the CPU 12 can form multi-
resolution representations such as a scale-spaced pyramid of representations of the image. As shown in figure 3b, in a
scale-spaced pyramid, the set of image files 18a, b, ¢ ..n, are generated, each at a different scale of resolution relative
to the resolution of the original image, from a finest resolution (defined as the resolution of the original image in image
file 18) to relatively coarser resolutions, at each upper level of the pyramid. Each of image files 18, 18a, ... 18n of figure
3b is an array of pixels, as generally shown in figure 2a. Image file 18a is a coarser resolution version of the original
image file 18, and image file 18b is a coarser resolution version of image file 18a, and so on. For example, as illustrated
in figure 3b, pixels P(5, 3), P(6, 3), P(5, 4) and P(6, 4) of fine resolution image file 18 map to, and therefor correspond
to, a single pixel, P,(3, 2) in the relatively coarse resolution image file 18a.

[0017] A scale-spaced pyramid(s) is formed via well known Gaussian and/or Laplacian pyramid formation techniques.
In a Gaussian pyramid, the originalimage file 18 is convolved with a Gaussian kernel g, for a low passfiltered, subsampled
version of the original image (image file 18a), having a cut off frequency set by the parameter 5. A full Gaussian pyramid
is formed when each coarse scale (e.g. image file 18a) is convolved with the Gaussian kernal to form a next level (image
file 18b), and so on (to image file 18n). A Laplacian pyramid provides a series of bandpass filtered versions of the original
image, wherein each scale of the pyramid corresponds to a different band of image frequencies.

[0018] If a series of selectively varied images represented by image files 18, 18a, ...18n is stated as a Gaussian
pyramid of low passed filtered versions of the original image, and expressed by original image i, and scales iy, iy, ... iy,
respectively, then any level of the pyramid is related to a downsampled next lower (finer) level by: i, = Lg* i,,_1), where
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| denotes a downsampling, g represents a low pass filter, such as, for example, the Gaussian low pass filter and *
denotes a spatial convolution.

[0019] For a Laplacian pyramid, in the series of images represented by image files 18, 18a, ...18n, each level of the
pyramid /, can be expressed in terms of a difference between levels of the Gaussian pyramid: /, = i, - Ti,,”,, where 1
denotes upsampling.

[0020] Moreover, starting with a multiplicative model for the image: | = M x L, where | is the original image, M is the
material component of the image and L is the illumination component, it can be shown that each level of the pyramid
can be decomposed into a material pyramid and an illumination pyramid. For an additive model, the log color values
are logl =log M + log L. In terms of the Gaussian pyramid, the decomposition into material and illumination components
can be expressedas: g, *logl=g,*logM+ g, " log L.

[0021] In block 1004, the CPU 12 operates to perform an image segregation operation on at least one of the repre-
sentations of the pyramid, for example, original image file 18 and image file 18a, to generate intrinsic images including,
for example, each of an illumination image and a material image for each selected scale of the image. Each of the
intrinsic images corresponds to the image depicted at the resolution scales ofimage file 18 and imagefile 18a, respectively.
According to a feature of the present invention, the image segregation operation performed by the CPU 12 at each scale
of resolution, is implemented according to a spatio-spectral operator/constraint/solver model to identify the illumination
and material compaonents of the original image or any representation of the original image.

[0022] A fundamental observation underlying a basic discovery of the present invention, is that an image comprises
two components, material and illumination. All changes in an image are caused by one or the other of these components.
Spatio-spectral information is information relevant to contiguous pixels of an image depicted in an image file 18, such
as spectral relationships among contiguous pixels, in terms of color bands, for example RGB values of the pixels, and
the spatial extent of the pixel spectral characteristics relevant to a characteristic of the image, such as, for example, a
single material depicted in the image or illumination flux effecting the image. When one of material and illumination is
known in an image, the other can be readily deduced.

[0023] Moreover, the illumination flux includes an incident illuminant and an ambient illuminant. The spectra for the
incident illuminant and the ambient illuminant can be different from one another. Thus, a spectral shift is caused by a
shadow, i.e., a decrease of the intensity of the incident illuminant. The spectral shift can cause a variance in color of
material depicted in the scene, from full shadow, through the shadow penumbra, to fully lit. Pursuant to a feature of the
present invention, spectral shift phenomena is captured in spatio-spectral information. The spatio-spectral information
includes a spectral ratio: a ratio based upon a difference in color or intensities between two areas of a scene depicted
in an image, which may be caused by different materials (an object edge), an illumination change (illumination boundary)
or both.

[0024] According to a further feature of the present invention, spatio-spectral operators are generated to facilitate the
image segregation process performed in step 1004, for the segregation of illumination and material aspects of a scene
depicted in the retrieved image file 18, and any other representations of the image, such as image file 18a. Spatio-
spectral operators comprise representations or characteristics of an image that encompass spatio-spectral information
usable in the processing of material and illumination aspects of an image. The spatio-spectral operators are subject to
constraints that define constraining spatio-spectral relationships between the operators, for input to a solver. The oper-
ators can be identified at any one of the selectively varied representations of the original image, and the constraints
defined in terms of operators within a single representation or between operators in different representations.

[0025] A constraint can be imposed among the different levels of the pyramid, for example, to improve and expedite
segregation at the finer scale (image file 18). Tothat end, as described above, a segregation intoillumination and material
is first quickly and efficiently performed by the CPU 12 (according to the spatio-spectral operator/constraint/solver model,
described in detail below) for the relatively coarse image (for example, image file 18a). Thereafter, for more consistent
and accurate results, during segregation at the finer scale, material color at each local area of the relatively finer scale
image (for the material image generated for image file 18) is constrained such that a weighted average of the color at
a local area of the fine scale equals the color of a corresponding local area of the coarse scale.

[0026] Such a weighted average constraint can be expressed, in a simplified analysis for a three pixel local area of
the fine scale representation, as follows: if the log intensities are related as: i2(x, y) = 0.5 *i1(x, y) + 0.25 i1 (x-1, y) +
0.25%11 (x+1, y), wherein i2 (corresponding, for example, to the log of image file 18a) is a blurred version of i1 (corre-
sponding to the log of image file 18); then the log material values are related as : m2(x, y) = 0.5 * m1(x, y) + 0.25 *m1
(x-1,y) + 0.25*m1 (x+1, y), wherein m1 and m2 are the material components of i1 and i2, respectively. Typically, the
analysis is performed for a local area of the fine scale that is larger than the area corresponding to the pixel of the coarse
scale representation, to avoid aliasing. For example, in pyramid wherein the coarse scale has half the pixels of the fine
scale, a 5 X 5 pixel square would be used to calculate the weighted average for the color at the fine scale, and then
constrained to be the color of a single pixel in the coarse scale representation.

[0027] Inthe exemplary embodiment of the present invention, the solver includes a mathematical processing engine
that operates to obtain an optimized solution for the generation of an intrinsic image, such as a material image and/or
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an illumination image derived from the original image stored in the retrieved image file 18 or any other representation
of the image, as a function of the constraining relationships between the spatio-spectral operators.

[0028] Spatio-spectral operators include, for example, tokens, token map information, log chromaticity representation
values, X-j unctions, BIDR model representations, a boundary representation, and a texton histogram based pixel rep-
resentation. Each of the spatio-spectral operators can be computed and applied at the image file 18, and/or at any of
the image files 18a, ...18n, and any solution at any level can be related to any solution at any other level eachvia the
upsampling and downsampling relationships described above.

[0029] Pursuant to afeature of the present invention, a token is a connected region of an image wherein the pixels of
the region are related to one another in a manner relevant to identification of image features and characteristics such
as identification of materials and illumination. The use of tokens recognizes the fact that a particular set of material/illu-
mination/geometric characteristics of an image extends beyond a single pixel, and therefore, while the image processing
described herein can be done on a pixel level, tokens expedite a more efficient processing of image properties. The
pixels of a token can be related in terms of either homogeneous factors, such as, for example, close correlation of color
values among the pixels, or nonhomogeneous factors, such as, for example, differing color values related geometrically
in a color space such as RGB space, commonly referred to as a texture.

[0030] Exemplary embodiments of the present invention provide methods and systems to identify various types of
homogeneous or nonhomogeneous tokens for improved processing of image files. The present invention utilizes spatio-
spectral information relevant to contiguous pixels of an image depicted in an image file 18, or contiguous pixels of any
selectively varied representation (image files 18a, ...18n) to identify token regions within the original image and/or within
any of the variations thereof. Such tokens identified in different selectively varied representations of the image can be
used in, for example, the weighted average color constraint discussed above.

[0031] According to one exemplary embodiment of the present invention, homogeneous tokens are each classified
as either a Type A token, a Type B token or a Type C token. A Type A token is a connected image region comprising
contiguous pixels that represent the largest passible region of the image encompassing a single material in the scene.
A Type B token is a connected image region comprising contiguous pixels that represent a region of the image encom-
passing a single material in the scene, though not necessarily the maximal region corresponding to that material. A Type
C token comprises a connected image region of similar image properties among the contiguous pixels of the token, for
example, similar color and intensity, where similarity is defined with respect to a noise model for the imaging system
used to record the image. The weighted average constraint discussed above, can be implemented at a Type C token
level, constraining the weighted average color of a token(s) at the fine scale to the color of a corresponding token(s) at
a coarse scale.

[0032] A lineartokenis a nonhomogeneous token comprising a connected region of the image wherein adjacent pixels
of the region have differing color measurement values that fall within a cylinder in RGB space, from a dark end (in
shadow) to a bright end (lit end), along a positive slope. The cylinder configuration is predicted by a bi-illuminant dichro-
matic reflection model (BIDR model), according to a feature of the present invention, when the color change is due to
an illumination change forming a shadow (i.e. a decrease in the intensity of the incident illuminant as the interplay
between the incident or direct illuminant and the ambient illuminant in the illumination field) over a single material of a
scene depicted in the image.

[0033] For purposes of describing, identifying and using linear tokens, the BIDR model can be stated as: I(X‘y‘ 2,9, 6.%)
=cp (M) Iy (W) vp + Mg (M) c (A), where: I(X‘yy 2,6, 9,%) is the radiance of a surface point at (x, y, z) in the direction 8, ¢ for
the wavelength %, ¢, (1) is the geometry independent body reflectance of a surface for the wavelength &, | (1) is the
incident illuminant for the wavelength k. v, is the product of a shadow factor s, | , and a geometric factor my, (6;), and
M, (1) is the integral of the ambient illuminant and geometric body reflectance over a hemisphere, excluding the incident
illuminant. For more detailed information on the BIDR model, reference should be made to U. S. Application Serial No.
11/341,751, filed January 27, 2006, entitled: "Bi-illuminant Dichromatic Reflection Model For Image Manipulation,” pub-
lished as US 2007/0176940 on August 2, 2007.

[0034] Token map information indicates locations of tokens within an image, relative to one another. The map infor-
mation is used to identify neighboring tokens for performing an analysis of token neighbor relationships relevant to
constraining spatio-spectral relationships between tokens, for input to the solver. A token map can be generated for
each selectively varied representation of the original image in respect of tokens identified at each respective variation.
[0035] Logchromaticity representation values provide illumination invariant values for pixels of the image. Logarithmic
values of the color band values of the image pixels are plotted on a log-color space graph. The logarithmic values are
then projected to a log-chromaticity projection plane oriented as a function of the BIDR model. The chromaticity plane
values are substituted for the color band values (for example, RGB values) of each pixel. For more detailed information
on log chromaticity representation values, reference should be made to U. S. Application Serial No. 11/403,719, filed
April 13, 20086, entitled: "Method And System For Separating lllumination And Reflectance Using a Log Color Space,”
published as US 2007/0242878 on October 18, 2007.

[0036] An X-junction is an area of an image where a material edge and an illumination boundary cross one another.
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An X-junction is an optimal location for an accurate analysis of material and illumination aspects of an image.

[0037] A boundary representation is an arrangement of pixels, on each side of a boundary, formed by, for example,
adjacent Type B tokens. The arrangement is used to facilitate an analysis of the boundary to classify the boundary as
a material boundary on a smooth surface (as opposed to another type of boundary, for example, an illumination edge,
depth boundary or simultaneous illumination and material change). The pixel representation is configured to provide
samples of pixels within each of the Type B tokens forming the boundary. The pixels of the samples are subject to spatio-
spectral analysis, and the results are compared to determine the likelihood that the respective boundary corresponds
to a material change.

[0038] A texton is a homogeneous representation for a region of an image that comprises a texture. Image texture
can be defined as a function of spatial variation in pixel intensities. Image texture patterns are frequently the result of
physical or reflective properties of the image surface. Commonly, an image texture is associated with spatial homogeneity
and typically includes repeated structures, often with some random variation (e.g., random positions, crientations or
colors). Image textures are also often characterized by certain visual properties such as regularity, coarseness, contrast
and directionality. An example of image texture is the image of a zebra skin surface as it appears to be spatially homog-
enous and seems to contain variations of color intensities which form certain repeated patterns. Some image textures
can be defined by geometric characteristics, such as stripes or spots. A texton based operator, such as a texture token,
as will be described, transforms patterns of differing reflectance caused by a textured material into a homogeneous
representation that captures the spectral and spatial characteristics of the textured region in the image.

[0039] Constraints between spatio-spectral operators comprise, for example, an anchor constraint, a same illumination
constraint, a smooth illumination constraint, a Type B token constraint, a Linear token constraint, a BIDR enforcement
constraint, a same texton histogram constraint, a log chromaticity similarity constraint, an X junction constraint, and a
boundary representation constraint. Other constraints can be formed as between spatio-spectral operators, or other
indicia, from different ones of the selectively varied representations of the image, such as, for example, the weighted
average color constraint described above. Each constraint is configured as a constraint generator software module that
defines the spatio-spectral operators utilized by the respective constraint and provides an expression of the constraining
relationship imposed upon the constituent operators.

[0040] An anchor constraint utilizes a number of brightest/largest Type C tokens in an image. The constraining rela-
tionship is that the material of the selected brightest/largest Type C tokens is constrained to be an absolute value for
the color/brightness observed in the image. The constraint anchors a material map for the image atan absolute brightness
to avoid relative brightness constraints.

[0041] A same illumination constraint utilizes Type C tokens and Type B tokens identified in an image and token map
information. The constraining relationship is that adjacent Type C tokens, as indicted by the token map information, are
at the same illumination, unless the adjacent Type C tokens are part of the same Type B token. The term "same” in
connection with the term "illumination"is used to mean an average value with respect to a noise model for the imaging
system used to record the image. This constrains any observed differences in appearance between adjacent Type C
tokens, that are not part of the same Type B token, to be a material change, as will appear.

[0042] A smooth illumination constraintis similar to the same illumination constraint. However, rather than constraining
all pixels of adjacent Type C tokens to be of the same illumination, as in the same illumination constraint, in the smooth
illumination constraint, the constraint is based upon the average illumination of the pixels near a shared boundary
between adjacent Type C tokens. This constrains the illumination field to be somewhat smooth, as opposed to piecewise
constant (the same, as defined above) throughout a token.

[0043] A Type Btoken constraintalso utilizes Type C tokens and Type B tokens. However, the constraining relationship
is that all Type C tokens that are part of the same Type B token are constrained to be of the same material. This constraint
enforces the definition of a Type B token, that is, a connected image region comprising contiguous pixels that represent
a region of the image encompassing a single material in the scene, though not necessarily the maximal region corre-
sponding to that material. Thus, all Type C tokens that lie within the same Type B token are by the definition imposed
upon Type B tokens, of the same material, though not necessarily of the same illumination. The Type C tokens are
therefore constrained to correspond to observed differences in appearance that are caused by varying illumination.
[0044] Accordingly, the Type B token constraint is complementary to the same and smooth illumination constraints,
which, as opposed to illumination change, constrain observed differences to correspond to material change, as described
above. This is due to the fact that in each of the same and smooth illumination constraints, Type C tokens that are
adjacent and not part of the same Type B token, are constrained to the same illumination. These Type C tokens should
comprise different materials, since by the constraint, they are notin the same Type B token and therefore, by the definition
of Type B tokens enforced by the constraint, do not encompass a single material, so illumination should be a constant,
and any observed difference is considered as attributable to a material change.

[0045] To summarize, pursuant to a feature of the present invention, the Type C and Type B token spatio-spectral
operators are defined to provide characteristics of an image that enable segregation of illumination and material. Type
C tokens each comprise a connected image region of similar image properties, for example similar color, as recorded
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and stored in an image file 18. Thus, adjacent Type C tokens indicate some form of change in the image or else they
would form the same Type C token. Type B tokens encompass a single material. The complementary constraints of the
same/smooth illumination constraints and the Type B token constraint enforce relationships between the tokens that
indicate either a material change or an illumination change.

[0046] Ifthe adjacent Type Ctokens are withinthe same Type Btoken, as inthe Type B token constraint, the differences
between them should correspond to illumination change due to the same material property of the common Type B token.
If the adjacent Type C tokens are not within the same Type B token, as in the same/smooth illumination constraints, the
difference between them should then correspond to a material change since they are not both defined by a common,
single material Type B token.

[0047] A Linear token constraint utilizes Type C tokens and Linear tokens. The constraining relationship is that a
difference between two Type C tokens, spaced by a Linear token, approximately equals a characteristic illuminant
spectral ratio for the image. As defined, a Linear token follows a cylinder configuration along a positive slope, through
color space. The BIDR model predicts that the positive slope equals a characteristic illuminant spectral ratio for the
image. Thus, the color difference between two Type C tokens, one at each of the dark end and bright end of a Linear
token, should reflect the value of the respective characteristic illuminant spectral ratio for the image.

[0048] A BIDR enforcement constraint utilizes Type C tokens and a BIDR model defined normal vector for the log-
chromaticity projection plane. The constraining relationship is that the illumination for all Type C tokens in a local patch
of the image forms a set of parallel lines in log-color space, the orientation of the parallel lines being defined by the BIDR
model defined normal vector. The constraint therefore enforces the illumination field present in the image to explicitly fit
the BIDR maodel prediction for the illumination.

[0049] Thus, each of the Linear token constraint and the BIDR enforcement constraint utilize BIDR model predictions
as a basis to segregate illumination and material aspects of an image. The BIDR model predicts a color change in an
image when the color change is due to an illumination change forming a shadow (i.e. a decrease in the intensity of the
incident illuminant as the interplay between the incident or direct illuminant and the ambient illuminant in the illumination
field) over a single material of a scene depicted in the image. The color change prediction of the BIDR model accurately
constrains all color band variations among Type C tokens to illumination field effects occurring in an image by operating
as afunction of the interplay between the spectral variations occurring between incident illuminant and ambient illuminant
components of the illumination field. Thus, BIDR model based constraints couple all color band variations into one
integral constraining relationship.

[0050] A same texton histogram constraint utilizes Type C tokens and texton histogram operators identified for texture
regions, such as texture tokens, within an image. A texton analysis is utilized wherein each pixel of the image (or pixels
of those regions of an image identified as comprising a texture) from the recorded color band representation of the
respective image file 18, such as, for example, RGB color band values, is converted to a two band representation wherein
the two bands comprise a texton label and a texton histogram label. The two band representations are then used to
identify texture tokens, as will be described below. A constraint can be imposed that all Type C tokens within the same
texture token are of the same mean material.

[0051] A log chromaticity similarity constraint utilizes Type C tokens and log chromaticity representation values. The
constraining relationship is that those Type C tokens having pixels with similar log chromaticity representation values
are constrained to a same color value, with observed differences being attributed to variations in the illumination field.
[0052] An X-junction constraint utilizes Type C tokens and X-junction operators. As noted above, an X-junction is an
area of an image where a material edge and an illumination boundary cross one another. X-junctions are typically
identified by four Type C tokens, two pairs of same material Type C tokens forming the material edge, with each same
material pair including an illumination boundary dividing the respective same material into lit and shadowed pairs of
Type C tokens. The constraining relationship: 1) a Type B token constraint is imposed between each same material pair
of Type C tokens forming the X-j unction (those with an illumination boundary between them), and 2) a same illumination
constraint is imposed between each pair of Type C tokens forming the material edge of the X-junction. For a more
detailed description of X-junctions and the relationships of constituent tokens, reference should be made to U. S. Appli-
cation Serial No. 11/341,742, filed January 27, 2006, entitled: "Method And System For Identifying lllumination Flux In
An Image,” published as US 2006/0177149 on August 10, 2006.

[0053] A boundary representation constraint is defined by a standard ratio constraint. An analysis performed on a
boundary representation, when indicating a material change, provides an estimate of the ratio of colors between two
adjacent regions defined by the boundary, for example, the adjacent Type B tokens, even when the illumination varies
over the regions. The constraint states that theratio of the colors oftwo adjacentregions is X. The boundary representation
analysis is executed at the level of Type B tokens, to classify a boundary as being caused by a material change, then
propagated down to the level of the constituent Type C tokens. For a more detailed description of a boundary analysis,
at the Type B token level, reference should be made to U. S. Application Serial No. 12/079,878, filed March 28,2008,
entitled "System and Method For lllumination Invariant Image Segmentation.”

[0054] According to a feature of the present invention, the boundary representation constraint states that all adjacent
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pairs of Type C tokens along the boundary, (one Type C token on each side of the boundary, and all of the Type C
tokens being within the Type B tokens forming the respective boundary), have colors that satisfy the ratio X, as indicated
by the boundary representation analysis.

[0055] According to a preferred embodiment of the present invention, each of the above described constraints can be
classified into one of three basic types of constraints, an absolute material color constraint, a same material constraint
and a relative reflectance constraint. The absolute material constraint constrains the material at a particular location of
an image to be a certain color, as implemented in, for example, the anchor constraint. The same material constraint
constrains operators relevant to an image (for example, two pixels or Type C tokens) to be of the same material. The
same material type of constraint can be implemented in, for example, Type B, X-junction, log chromaticity similarity,
same texton histogram and linear token constraints. The relative reflectance constraint constrains operators relevant to
an image (for example, two pixels or Type C tokens) to have a similarity of reflectance characteristics, such as defined
by smooth illumination and same illumination constraints, and which can be specified by X-junction, and boundary
representation constraints.

[0056] In another example of the selectively varied representation embodiment of the present invention, such as the
multi-resolution embodiment, groupings provided by the spatio-spectral operators, such as Type C tokens, Type B tokens
and texture tokens, are identified at one scale, such as a fine scale (for example image file 18) and constraining rela-
tionships among those groupings are projected to a coarse scale (for example image file 18a). In this exemplary em-
bodiment of the present invention, a constraint implemented at a fine scale representation, such as, for example, the
same material constraint of a Type B token constraint, is arranged to constrain pixels or Type C tokens to be within in
the same Type B token, and further, to be within a relatively limited neighborhood of the fine scale representation. The
neighborhood is limited to an extent somewhat less than the extent of a typical relevant Type B token, for example, a
neighborhood comprising a 50 x 50 pixel array. The limited neighborhood restriction has the advantage of assuring a
sparse matrix for an accurate solution, with operating efficiencies for speedy processing, resulting from the limited extent
of the image subject to analysis according to the constraint. However, the implementation across multiple scales also
assures a solution according to a long range constraint since a short range within a coarse scale representation corre-
sponds to a relatively long range in the fine scale representation.

[0057] A projection of the constraining relationship imposed on a grouping, from one scale, to another scale, is imple-
mented, for example, by upsampling the grouping identified and used in the constraint at the fine scale representation,
to a next coarse scale representation. The performance of the constraint is repeated at the coarse scale, again limiting
the neighborhood processed at the coarse scale, and subject to the inter-scale relationship defined by the filtering/down-
sampling operation, and so on throughout the various scales of the pyramid. The limit at the coarse scale is a multiple
of the same limit of the relatively fine scale. For example, as shown in figure 3b, a single pixel, P,(3, 2) in the relatively
coarse resolution image file 18a corresponds to pixels P(5, 3), P(6, 3), P(5, 4) and P(6, 4) of fine resolution image file
18. The grouping can be identified at any of the scales of resolution, and projected via upsampling or downsampling to
the other scales.

[0058] An exemplary solver according to a feature of the present invention comprises a mathematical processing
engine for executing an optimizing function, for example, optimization of results in an equation expressed by : [A] [X] =
[b], where [A] is a matrix of values that are to be satisfied by (and therefore, taken as solved for by) the definitions of the
operator(s) and the constraining relationship(s) for the operator(s), as indicated by selected constraint(s), [x] is a matrix
of variables for which the equation is finding an optimal solution, for example, one of anillumination or material component
of an image component, for example, a pixel or token, and [b] is a matrix of values observed in an image selected for
processing, for example, the recorded values for the RGB color bands of each pixel of an image file 18 or color values
of pixels within a selectively varied representation of the original image depicted in image file 18 (e.g. image files 18a ...
18n). The optimizing equation can be implemented in a mathematical optimizing function selected from a set of known
optimization solvers such as, for example, known convex optimization operations such as a least squares solver, or a
preconditioned conjugate gradient solver.

[0059] According to the selectively varied representation embodiment of the present invention, a solution according
to the [A] [x] = [b] matrix equation can be accomplished at each representation, for example, at each scale of the scale-
spaced pyramid, either simultaneously or sequentially. The inter-scale relationship constrains the multi-scale solution,
while introducing efficiencies in operation execution for increased speed. By dividing processing across different scales,
solutions are found for a set of smaller systems rather than one large complex system. Thus, the solutions are more
accurate and the CPU 12 can execute in faster computation times while utilizing substantially less memary.

[0060] According to a further feature of the present invention, factors including bounds, are introduced in a solver
operation, in addition to constraining relationships, as a function of real world illumination and material phenomena, to
keep material/illumination values within physically plausible ranges, such as a limit 1, limit infinity solver (L4, L,), a
bounded least squares solver, or a bounded L4, L, solver, as will be described below.

[0061] Figure 4 shows a functional block diagram of an image segregation system architecture, implemented in, for
example, the computer system of figure 1, according to a feature of the present invention. Alternatively, the functional
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blocks of figure 4 can be implemented in a dedicated hardware circuit arranged to perform the functionality of the blocks
of figure 4. An image 32 (as depicted in an image file 18, or one of the selectively varied representations in image files
184, ...18n) is input to a preprocessing block 33. The preprocessing block 33 can perform such functions as correction
of chromatic aberration in the image 32, combining multiple images to provide a high dynamic range image, linearize
pixel data for the image, and so on, for an image optimized for processing. The pre-processed image is then input to a
Type C tokenization block 35 which operates to identify Type C tokens in the pre-processed image, in the manner
described below. Type C tokens are common to many of the constraints utilized in exemplary embodiments of the present
invention, thus, an initial identification of Type C tokens for an input image 32 expedites further processing.

[0062] In an exemplary embodiment of the present invention, the CPU 12 executes code to implement both the
preprocessing block 33 and the Type C tokenization block 35, as well as a service provider 24, that functions as a central
agent and caching structure (configured in the memory 16), to handle an image for processing according to the teachings
of the present invention. The service provider 24 receives and stores the pre-processed image and related Type C token
information from the Type C tokenization block 35, and is coupled to an operators block 28 (executed by the CPU 12)
arranged to generate any other operators for the image required by selected constraints, as will appear. The service
provider 24 is also coupled to a global features extraction input 29. The global features extraction input 29 can be used
to provide the system with information relevant to an image being processed, such as an indication of light source when
the image was taken (sunlight, fluorescent light, incandescent light), time of day, location, domain knowledge, such as
information relevant to the nature of the image, such as interior, exterior, buildings, lawns with green grass, trees with
leaves in bloom, etc., and any other parameters relevant to image processing. The service provider 24 stores the global
features extraction input 29 with a related input image 32.

[0063] A constraintbuilder 26 is coupled to the service provider 24. The constraint builder 26 uses a constraint generator
library (configured within the memory 16) that stores the constraint generator software modules for the various constraints
described above. The service provider 24 and constraint builder 26 operate to arrange spatio-spectral operators relevant
to the pre-processed image, according to selected ones of the constraint generator software modules, in for example,
the [A] [x] = [b] matrix equation.

[0064] A solver 30 (executed by the CPU 12) is coupled to the constraint builder 26, and implements an optimization
operation, as described above, for an optimal solution for the [A] [x] = [b] matrix equation, for use in generating intrinsic
images from the pre-processed image. The solver 30 is also coupled to a post-processing block 36 (executed by the
CPU 12) for certain post-processing operations. The post-processing operations can include, for example, monotonicity
maintenance. In monotonicity maintenance, if two large regions exhibit a linear transition in the input image 32, the
transition should remain a linear transition in the output intrinsic image 34. Post-processing can also include illumination
propagation, that serves to fill in holes left by the solver 30, illumination-map based white balancing and other filtering,
smoothing processes. The post-processing block 36 outputs intrinsic images 34.

[0065] Referring now tofigure 5, there is shown a graphical user interface (GUI) for use in connection with an exemplary
implementation of the image segregation system architecture feature of the present invention. The GUI of figure 5 is
displayed on the monitor 20 of the computer system 10 by the setvice provider 24 for a user to select a desired image
segregation operation. The upper left hand corner of the GUI indicates Open Image, Crop Image, Show Parameters,
Segregate and Multi-Resolution selection indicators. A user can move and click a cursor on a desired selector indicator.
The Open Image indicator lists all image files 18 currently stored in the memory 16 and enables the user to select an
image for processing. The selected image is input 32 (see figure 4) to the service provider 24 (via the preprocessing
block 33 and the Type C tokenization block 35) which operates to display the selected image at the upper center of the
monitor 20 (figure 5).

[0066] A material image derived by operation of the exemplary segregation system from the selected image is output
34 (see figure 4) after execution of the image segregation processing by the solver 30 and displayed at the lower right
hand of the monitor 20 (figure 5). The derived illumination image is displayed at the lower right hand of the monitor 20
(figure 5).

[0067] According to afeature of the presentinvention, the Crop Image selector permits a user to crop a selected image
s0 as to process a portion of the overall image. The Show Parameter selector displays parameters related to the selected
image file 18. Parameters for each image file 18 can be stored in a parameter data file associated with a corresponding
image file 18, and include any parameters relevant to the processing of the image depicted in the associated image file
18, for example the global features extraction input 29. Parameters can include any data relevant to image processing
such as, for example, any variable for pixel analysis by the CPU 12, as for example, in the generation of spatio-spectral
operators, and domain knowledge, such as information relevant to the nature of the image, such as interior, exterior,
buildings, lawns with green grass, trees with leaves in bloom, etc.

[0068] A multi-resolution selector can display a drop down menu that provides options such as either a Gaussian or
Laplacian pyramid generation, with specification of the number of scales, and the resolution of each scale. The drop
down menu can also include selections for a computer operation for illumination and material image segregation, to be
performed at a relatively coarse scale representation of the image, and then used to constrain a solution at a relatively
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finer scale resolution. In another selection option, a segregation of illumination and material aspects of the image is
selectively divided among representations at differing scales of image resolution, as described above.

[0069] Below the selection indicators is a list of each of the optimizing functions that can be used as the solver 30,
and a further list of each of the constraint generators contained in the constraint generator library of the constraint builder
26. A user selects a desired mathematical operation and one or more of the constraints to be imposed upon the selected
image. After selection of the image to be processed, the constraints to be imposed and the mathematical operation to
be executed, the user can click on the Segregate indicator to commence image segregation processing.

[0070] Upon commencement of the image segregation processing, the service provider 24 generates a scale-spaced
pyramid, if a multi-resolution operation is selected, and retrieves the constraint generator software modules for the
selected constraints to identify the spatio-spectral operators utilized by the selected constraints. Any spatio-spectral
operators not already stored by the service provider 24 are generated by the operators block 28, for the image being
segregated, and the service provider 24 caches the results. The cached results can be reused in any subsequent
operation for a selected image, with the same set of associated parameters.

[0071] In a multi-resolution operation, the service provider 24 can sequence operations, such as perform the segre-
gation at the relatively coarse representation of image file 18a, store the results, then proceed to a segregation of image
file 18, enforcing the color constraint described above. The service provider 24 (operating via the CPU 12) can also be
operated to execute a standard edge detector, then define regions of the relatively fine resolution image of image file
18 around each identified edge. An image segregation is then performed in respect of the identified edge regions of the
image file 18. A subsequent image segregation is performed on relatively coarse image file 18a for regions corresponding
to all non-edge regions of image file 18.

[0072] In an example of an implementation of the spatio-spectral operator/constraint/solver model of the present
invention, when the selected constraint is a same illumination constraint, the service provider 24 identifies Type C tokens,
Type B tokens and a token map for the selected image. The Type C tokens were generated by the Type C tokenization
block 35. The service provider 24 operates the operators block 28 to generate the remaining operators specified by the
same illumination constraint.

[0073] Referring now to figure 6a, there is shown a flow chart for generating Type C token regions in the image file of
figure 2a, (as depicted in one or more or each of image file 18, and image files 18a, ...n), according to a feature of the
present invention. Type C tokens can be readily identified in an image by the Type C tokenization block 35, utilizing the
steps of figure 6a. The operators block 28 can then analyze and process the Type C tokens to construct Type B tokens
when specified by a selected constraint, as will appear.

[0074] Prior to execution of the routine of figure 6a, the CPU 12 can operate to filter the image depicted in a subject
image file 18. The filters may include an image texture filter, to, for example, transform patterns of differing reflectance
caused by a textured material into a homogeneous representation that captures the spectral and spatial characteristics
of the textured region in the image. Identification of Type B tokens can be difficult in an image texture. A textured image
contains materials with, for example, more than one reflectance function that manifests as a defining characteristic. For
example, the defining characteristic can be a pattern of colors within the texture, such that the texture displays a certain
distribution of colors in any patch or region selected from anywhere within the textured region of the image.

[0075] In many instances, the texture filters may only be required on part of an input image, as much of the image
may include homogeneously colored objects. Therefore, prior to application of the texture filters, it is useful to identify
and mask off regions of homogeneous color. The texture filters are then only applied to areas where there appear to be
textured materials. An example algorithm for identifying textured regions is as follows:

1) Execute a type C tokenization on the N-band color values (e.g. RGB), storing the token results in a region map
R, where each pixel in the region map has the token ID of the token to which it belongs (see description of figure 5a).
2) Execute a median filter on the region map R (e.g. each pixel P_ij is replaced by the median token ID of a 7x7 box
around P_ij). Store the result in R-median.

3) Execute a filter on the original image that calculates the standard deviation of the pixels in a box around each
pixel (e.g. 7x7) for each color band. Put the resultin S.

4) For each pixel in S, divide the standard deviation calculated for each color band by an estimated noise model
value. An example noise model is Sn = A*maxValue + B*pixelValue, where maxValue is the maximum possible
color band value, pixelValue is the intensity of a particular band, and A and B are constants experimentally determined
for the imaging system (e.g. A = 0.001 and B = 0.06 are typical). This step converts the standard deviation into a
normalized deviation for each color band. Store the results in Sn.

5) For each pixel in Sn, sum the squares of the normalized deviations for all N color bands, take the square root of
the result and divide by the number of bands N to create a deviation value D_ij. Compare the resulting deviation
value D_ij to a threshold (e.g. 1.0) assign a 1 to any pixel with a deviation value higher than the threshold, otherwise
assign the pixel a 0. Store the results in a texture mask image T.

6) For each pixel in T, if the texture mask value T_ij = 1 and the seed size of the token region with the id given in
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the median region map R-median_ij is less than a threshold (e.g. < 4), label the pixel as a textured pixel. Otherwise,
label it as a homogeneous pixel. Store the result in the texture mask Tmask.

[0076] The output of the above algorithm is a mask, Tmask, which is an array of the size of the original image file 18
(n, m). Pixels (p(n, m)) having a corresponding Tmask locaticn in the array with a 1 value should be treated as part of
an image region corresponding to texture materials and pixels with a corresponding Tmask array location having a value
of 0 should be treated as part of an image region corresponding to materials of homogeneous color.

[0077] The CPU 12 can execute a software module that implements any well known method handling textures, such
as, for example, a Laws filter bank, or wavelets (see, for example, Randen, T.[Trygve], Husey, J.H. [John Hakon],
Filtering for Texture Classification: A Comparative Study, PAMI(21), No. 4, April 1999, pp. 291-310). See also: Are Filter
Banks Necessary? Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2003,
volume 2, pages 691-698.

[0078] In one exemplary embodiment of the present invention, Type C tokens are generated using an intensity histo-
gram representation for each pixel of an image (or, preferably, for pixels of the image in regions identified as comprising
atexture). The Type C tokens generated using intensity histograms are then used to generate Type B tokens. An intensity
histogram representation for each pixel in a texture filter output image can be produced using the following algorithm:

A) Loop through all memory addresses/indexes in the Tmask array (n, m);
B) At each memory address/index of the Tmask array determine whether the value at each location is 1 or 0;
C) If a memory address/index of the Tmask has a 1 value indicating texture:

a. Open the corresponding memory address/index in the corresponding image file 18 p(n, m) and access that
memory address/index;

b. Open that memory address/index for writing data;

c. Initialize N 8-bin histograms to zero, one for each color band;

d. For each pixel g within a neighborhood of p (for example, an 11x11 pixel array):

For each of the N color values Cn of q (e.g. RGB wherein each color value is set between 0-255);

(i) If N color value is between 0 and 31, then increment the first bin in 8-bin histogram of color N;

(ii) If N color value is between 32 and 64, then increment the second bin in 8-bin histogram of color N;
(iii) If N color value is between 65 and 97, then increment the third bin in 8-bin histogram of color N;

(iv) If N color value is between 98 and 130, then increment the fourth bin in 8-bin histogram of color N;
(v) If N color value is between 131 and 163, then increment the fifth bin in 8-bin histogram of color N;

(vi) If N color value is between 164 and 196, then increment the sixth bin in 8-bin histogram of color N;
(vii) If N color value is between 197 and 229, then increment the seventh bin in 8-bin histogram of color N;
(viii) If N color value is between 230 and 255, then increment the eighth bin in 8-bin histogram of color N;

e. Concatenate the N 8-bin histogram values together into a single intensity histogram comprising an 8xN
element vector;

f. Assign the 8xN element vector to the carresponding pixel p in the image file array p(n, m);

g. If current or next memory address/index is not last/Tmask (n, m), then move on to the next memory ad-
dress/index in Tmask (n, m) array and execute step B;

h. If current memory address/index is last/equal to Tmask (n, m), then cease looping through Tmask (n, m) array.

D) If a memory address/index has a 0 value:

i. If current address/index is not a last element in Tmask (n, m) array, then move on to the next memory
address/index in Tmask (n, m) array and execute step B;

ii. If current memory address/index location is a last element in Tmask (n, m) array, then cease looping through
Tmask (n, m) array.

[0079] Afterthe transformation for each pixel in the textured region of the image from a set of color bands, for example
RGB, to an intensity histogram vector comprising a set of filter outputs, for example the 8 X N concatenation, the image
is treated exactly as the original color band image with respect to identifying type C tokens with the 8 X N element
intensity histogram vector being used in place of the RGB color band values.

[0080] Fig.2b shows an 11 X 11 pixel array at the upper left hand corner of an image file 18. The 11 X 11 pixel array
of figure 2b is used as an illustration for a method to produce an intensity histogram representation, as for example, for
pixel p(6,6) at the center Z of the array, according to the exemplary algorithm described above. In our example, it is

12



10

15

20

25

30

35

40

45

50

55

EP 2 435 956 B1

assumed that the 11 X 11 array is within a checkerboard pattern within the image depicted in the image file 18. The
checkerboard pattern comprises a pattern of alternating red, green and blue boxes as shown. Thus, pixel p(6,6) of our
example will have a 1 value in the corresponding Tmask generated by the CPU 12.

[0081] Pursuant to the exemplary algorithm, three 8 bin histograms are initialized by the CPU 12 (see figure 2¢), one
for each of the red, green and blue color values of the subject pixel p(6,6). The 11 X 11 pixel array is then used to
determine the values within the bins of the three histograms. In our example, the upper left hand section of the 11 X 11
array is a red box of the checkerboard pattern, and each pixel within that section (p(1,1) to p(5,5)) has an RGB value of
(123,0,0). The upper right hand section is green, thus the pixels within the section (p(1,7) to p(5,11)) each have an RGB
value of (0,123, 0). The lower left hand section is a blue box, with each of the pixels p(7,1) to p(11,5) having RGB values
of (0,0,123). Finally the lower right hand section of our example is again a red section, with each of the pixels p(7,7) to
p(11,11) having RGB values of (123,0,0), in the repeating red, green and blue checkerboard pattern.

[0082] As shown in Fig. 2b, the one (1) pixel thick cross-shaped border lines between red quadrant (p(1,1) to p(5,5)),
green quadrant (p(1,7) to p(5,11)), blue quadrant (p(7,1) to p(11,5)) and red quadrant (p(7,7) to p(11,11)) or any pixel
between p(6,1) to p(6,m) and any pixel between p(n,6) to p(11,6) may have an RGB value of (123,123,123). Pixel p(6,6)
at the center Z may also have the RGB value of (123,123,123).

[0083] Next, an 11 X 11 pixel box 301, with pixel Z at its center, is used to determine the value of pixel Z via an
histogram representation of pixel Z's RGB color band values using the steps exemplarily described below. As shown in
Fig. 2b, p(1,1) has RGB color value of (123,0,0) indicating some presence of red color and absence of green color and
blue color. Since the red value of p(1,1) is 123, the corresponding bin for that number value in red 8 bin histogram, as
shown in Fig. 2¢, would be incremented i.e. fourth bin within the red 8-bin histogram would be incremented. This process
would repeat itself until p(n,m) in pixel box 301 is reached. By this time, three 8-bin histograms, as shown in Fig. 2c,
may be filled with different values. These values may then be concatenated together into a single 8 X 3 element vector
and assigned to pixel Z in 11 X 11 pixel array depicted in the image file 18 of figure 2b.

[0084] Consequently, according to the exemplary algorithm described above and a checkerboard pattern within 11 X
11 pixel box 301 shown within image 18 depicted in Fig. 2b, the 3 8-bin histogram would be filled as follows:

[0085] Inred 8-bin histogram, the fourth bin would have a value of 71 (the amount of repetitions of red values between
98 and 130 in 25 pixels of 2 red quadrants plus the amount of repetitions of red values between 98 and 130 in 11 pixels
between p(6,1) to p(6,m) plus the amount of repetitions of red values between 98 and 130 in 10 pixels between p(n,6)
to p(11,6) resulting in 25+25+11+10=71). In a similar calculation, the first bin would have a value of 50 to indicate all of
the pixels with a zero value for red. All the other bins in red 8-bin histogram would have the values of 0. Thus, the red
8-bin histogram would be [50, 0, 0, 71, 0, 0, O, 0].

[0086] In green 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of green values
between 98 and 130 in 25 pixels of the green quadrant plus the amount of repetitions of green values between 98 and
130in 11 pixels between p(6,1) to p(6,m) plus the amount of repetitions of green values between 98 and 130 in 10 pixels
between p(n,6) to p(11,6) resulting in 25+11+10=46). The first bin has a value of 75 (for zero values of green). All the
other bins in green 8-bin histogram would have the values of 0. Thus, the green 8-bin histogram would be [75, 0, 0, 46,
0,0,0, 0]

[0087] Inblue 8-bin histogram, the fourth bin would have a value of 46 (the amount of repetitions of blue values between
98 and 130 in 25 pixels of the blue quadrant plus the amount of repetitions of blue values between 98 and 130 in 11
pixels between p(6,1) to p(6,m) plus the amount of repetitions of blue values between 98 and 130 in 10 pixels between
p(n,B) to p(11,6) resulting in 25+11+10=46). The first bin, again, has a value of 75. All the other bins in blue 8-bin
histogram would have the values of 0. Thus, the blue 8-bin histogram would be [75, 0, 0, 46, 0, 0, 0, 0].

[0088] Asaresultofthe above described algorithm, each 8-bin histogram, three in our example, would be concatenated
together into a single 8 X 3 element vector. Accordingly, this vector would be [50, 0, 0, 71,0, 0,0, 0, 75, 0, 0, 46, 0, O,
0,0,75,0,0, 486, 0,0, 0, 0].

[0089] Next, the above described vector would be assigned at p(6,6) at the center Z of the 11 X 11 array and therefore
replace the RGB value of pixel p(6,6), which originally was (123, 123, 123), with an intensity histogram set forth as [50,
0,0,71,0,0,0,0,75,0,0,46,0,0,0,0,75,0,0,46,0,0,0, 0].

[0090] A 1storder uniform, homogeneous Type C token comprises a single robust color measurement among contig-
uous pixels of the image. At the start of the identification routine of figure 6a, the CPU 12 (executing as the Type C
tokenization block 35) sets up a region map in memory. In step 100, the CPU 12 clears the region map and assigns a
region ID, which is initially set at 1. An iteration for the routine, corresponding to a pixel number, is set ati= 0, and a
number for an N x N pixel array, for use as a seed to determine the token, is set an initial value, N = Ng;, . Ngiaq Can be
any integer > 0, for example it can be set at set at 11 or 15 pixels.

[0091] At step 102, a seed test is begun. The CPU 12 selects a first pixel, i = (1, 1) for example (see figure 2a), the
pixel at the upper left corner of a first N x N sample of the image file 18. The pixel is then tested in decision block 104
to determine if the selected pixel is part of a good seed. The test can comprise a comparison of the color value of the
selected pixel to the color values of a preselected number of its neighboring pixels as the seed, for example, the Nx N
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array. The color values comparison can be with respect to multiple color band values (RGB in our example) of the pixel
or the filter output intensity histogram representation of the pixel, in the event the image was filtered for texture regions,
as described above. If the comparison does not result in approximately equal values (for example, within the noise levels
of the recording device for RGB values) for the pixels in the seed, the CPU 12 increments the value of i (step 106), for
example, i = (1, 2), for a next N x N seed sample, and then tests to determine if i = i, (decision block 108).

[0092] If the pixel value is at imax, a value selected as a threshold for deciding to reduce the seed size for improved
results, the seed size, N, is reduced (step 110), for example, from N = 15 to N = 12. In an exemplary embodiment of the
present invention, imax can be set ati = (n, m). In this manner, the routine of figure 5a parses the entire image at a first
value of N before repeating the routine for a reduced value of N.

[0093] After reduction of the seed size, the routine returns tc step 102, and continues to test for token seeds. An Ny,
value (for example, N = 2) is also checked in step 110 to determine if the analysis is complete. If the value of N is at
Nqio,, the CPU 12 has completed a survey of the image pixel arrays and exits the routine.

[0094] If the value of i is less than imax , and N is greater than N the routine returns to step 102, and continues
to test for token seeds.

[0095] When a good seed (an N x N array with approximately equal pixel values) is found (block 104), the token is
grown from the seed. In step 112, the CPU 12 pushes the pixels from the seed onto a queue. All of the pixels in the
queue are marked with the current region ID in the region map. The CPU 12 then inquires as to whether the queue is
empty (decision block 114). If the queue is not empty, the routine proceeds to step 116.

[0096] In step 116, the CPU 12 pops the front pixel off the queue and proceeds to step 118. In step 118, the CPU 12
marks "good" neighbors around the subject pixel, that is neighbors approximately equal in color value to the subject
pixel, with the current region ID. All of the marked good neighbors are placed in the region map and also pushed onto
the queue. The CPU 12 then returns to the decision block 114. The routine of steps 114, 116, 118 is repeated until the
queue is empty. At that time, all of the pixels forming a token in the current region will have been identified and marked
in the region map as a Type C token. In the event the pixels comprise intensity histogram representations, the token
can be marked as Type Cr.

[0097] When the queue is empty, the CPU 12 proceeds to step 120. At step 120, the CPU 12 increments the region
ID for use with identification of a next token. The CPU 12 then returns to step 106 to repeat the routine in respect of the
new current token region.

[0098] Upon arrival at N = Nstop, step 110 of the flow chart of figure 5a, or completion of a region map that coincides
with the image, the routine will have completed the token building task. Figure 6b is an original image used as an example
in the identification of tokens. The image shows areas of the color blue and the blue in shadow, and of the color teal
and the teal in shadow. Figure 6¢c shows token regions corresponding to the region map, for example, as identified
through execution of the routine of figure 6a (Type C tokens), in respect to the image of figure 6b. The token regions
are color coded to illustrate the token makeup of the image of figure 6b, including penumbra regions between the full
color blue and teal areas of the image and the shadow of the colored areas.

[0099] Upon completion of the routine of figure 6a by the Type C tokenization block 35, the service provider 24 stores
the Type C token region information for the selected image. Prior to commencing any process to generate Type B tokens
from the identified Type C tokens, the operators block 28 tests each identified Type C token to make certain that each
Type C token encompasses a single material. While each Type C token comprises a region of the image having a single
robust color measurement among contiguous pixels of the image, the token may grow across material boundaries.
[0100] Typically, different materials connect together in one Type C token via a neck region often located on shadow
boundaries or in areas with varying illumination crossing different materials with similar hue but different intensities. A
neck pixel can be identified by examining characteristics of adjacent pixels. When a pixel has two contiguous pixels on
opposite sides that are not within the corresponding token, and two contiguous pixels on opposite sides that are within
the corresponding token, the pixel is defined as a neck pixel.

[0101] Figure 7 shows a flow chart for a neck test for Type C tokens. In step 122, the CPU 12 examines each pixel of
an identified token to determine whether any of the pixels under examination forms a neck. The routine of figure 6 can
be executed as a subroutine directly after a particular token is identified during execution of the routine of figure 6a. All
pixels identified as a neck are marked as "ungrowable." In decision block 124, the CPU 12 determines if any of the pixels
were marked.

[0102] If no, the CPU 12 exits the routine of figure 7 and returns to the routine of figure 6a (step 126).

[0103] If yes, the CPU 12 proceeds to step 128 and operates to regrow the token from a seed location selected from
among the unmarked pixels of the current token, as per the routine of figure 6a, without changing the counts for seed
size andregion ID. During the regrowth process, the CPU 12 does notinclude any pixel previously marked as ungrowable.
After the token is regrown, the previously marked pixels are unmarked so that other tokens may grow into them.
[0104] Subsequent to the regrowth of the token without the previously marked pixels, the CPU 12 returns to step 122
to test the newly regrown token.

[0105] Neck testing identifies Type C tokens that cross material boundaries, and regrows the identified tokens to

stop?

14



10

15

20

25

30

35

40

45

50

55

EP 2 435 956 B1

provide single material Type C tokens suitable for use in creating Type B tokens. Figure 6d shows Type B tokens
generated from the Type C tokens of figure 6¢, according to a feature of the present invention. The present invention
provides several exemplary techniques of pixel characteristic analysis for constructing Type B tokens from Type C
tokens. One exemplary technique involves arbitrary boundary removal. The arbitrary boundary removal technique can
be applied to Type C tokens whether they were generated using N color band values (RGB in our example) of the pixel
or the filter output representation of the pixel, in the event the image was filtered. Actual boundaries of any particular
Type C token will be a function of the seed location used to generate the token, and are thus, to some extent arbitrary.
There are typically many potential seed locations for each particular token, with each potential seed location generating
a token with slightly different boundaries and spatial extent because of differences among the color values of the pixels
of the various seeds, within the noise ranges of the recording equipment.

[0106] Figure 8 is a flow chart for constructing Type B tokens via an arbitrary boundary removal technigue, according
to a feature of the present invention. In step 200, the CPU 12 is provided with a set (T.) of Type C tokens generated
with a seed size (S) via the routine of figure 6a, with neck removal via the routine of figure 7. The seed size S = S,
for example, S = 4 pixels. In step 202, for each Type C token, t. in the set T, the CPU 12 selects a number (for example
50) of potential seeds s; to s,,. In our example, each selected seed will be a 4X4 pixel array from within the token region,
the pixels of the array being of approximately equal values (within the noise levels of the recording device).

[0107] In step 204, the CPU 12 grows a new Type C token, utilizing the routines of figures 6a and 7, from each seed
location, s, to s, of each token t, in the set T,.. The newly grown tokens for each token t; are designated as tokens r 4
to rg,. The newly grown tokens r 4 to r,, for each token t, generally overlap the original Type C token t, as well as one
another.

[0108] In step 206, the CPU 12 operates to merge the newly generated tokens r4 to r,, of each token t,, respectively.
The result is a new token R, corresponding to each original token t; in the set T... Each new token R, encompasses all
of the regions of the respective overlapping tokens r.4 to r., generated from the corresponding original token t.. The
unions of the regions comprising the respective merged new tokens R, are each a more extensive token than the original
Type C tokens of the set. The resulting merged new tokens R, result in regions of the image file 18, each of a much
broader range of variation between the pixels of the respective token R, than the original Type C token, yet the range
of variation among the constituent pixels will still be relatively smooth. R, is defined as a limited form of Type B token,
Type B4, to indicate a token generated by the first stage (steps 200-206) of the arbitrary boundary removal technique
according to a feature of the present invention.

[0109] Instep 208, the CPU 12 stores each of the Type B, tokens generated in steps 202-206 from the set of tokens
T., and proceeds to step 210. Type B,,4 tokens generated via execution of steps 202-206 may overlap significantly. In
step 210, the CPU 12 operates to merge the R, tokens stored in step 208 that overlap each other by a certain percentage
of their respective sizes. For example, a 30% overlap is generally sufficient to provide few, if any, false positive merges
that combine regions containing different materials. The new set of merged tokens still may have overlapping tokens,
for example, previously overlapping tokens that had a less than 30% overlap. After all merges are complete, the CPU
12 proceeds to step 212.

[0110] In step 212, the CPU 12 identifies all pixels that are in more than one token (that is in an overlapping portion
of two or more tokens). Each identified pixel is assigned to the token occupying the largest region of the image. Thus,
all overlapping tokens are modified to eliminate all overlaps.

[0111] Instep 214, the CPU 12 (as the Type C tokenization block 35 or the operators block 28) stores the final set of
merged and modified tokens, now designated as Type B, tokens, and then exits the routine. As noted above, the Type
B,,» tokens were generated from Type C tokens whether the Type C tokens were generated using N color band values
(RGB in our example) of the pixel or the filter output representation of the pixel, in the event the image was filtered.
[0112] A second exemplary technique according to the present invention, for using Type C tokens to create Type B
tokens, is adjacent planar token merging. The adjacent planar token merging can be implemented when an image depicts
areas of uniform color, that is for non-textured regions of an image. Initially, a token graph is used to identify tokens that
are near to one another. Figure 9 shows a flow chart for creating a token graph, containing token map information,
according to afeature of the present invention. Each tokent, in the set of Type C tokens T, generated through execution
of the routines of figures 6a and 7, is evaluated in terms of a maximum distance D, between tokens defining a
neighboring pair of tokens, t, t,, of the set T, a minimum number of token perimeter pixels, P, in each token of the
neighboring pair of tokens, and a minimum fraction of perimeter pixels, F;,, of each token of a neighboring pair of
tokens, required to be within D, ,,.

[0113] In step 300, the CPU 12 selects a Type C token t, in the set of Type C tokens T, and identifies the pixels of
the selected token t, forming the perimeter of the token. In a decision block 302, the CPU 12 determines whether the
number of perimeter pixels is less than P ;,, for example 10 pixels.

[0114] If yes, the CPU 12 proceeds to decision block 304 to determine whether there are any remaining tokens t. in
the set of Type C tokens T... If yes, the CPU 12 returns to step 300, if no, the CPU 12 exits the routine 306.

[0115] If no, the CPU 12 proceeds to step 308. In step 308, the CPU 12 generates a bounding box used as a mask
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to surround the selected token t.. The bounding box is dimensioned to be at least D, larger than the selected token
t, in all directions. A known distance transform (for example, as described in P. Felzenszwalb and D. Huttenlocher,
Distance Transforms of Sampled Functions, Cornell Computing and Information Science Technical Report TR2004-1963,
September 2004), is executed to find the distance from each perimeter pixel of the selected token t to all the pixels in
the surrounding bounding box. The output of the distance transform comprises two maps, each of the same size as the
bounding box, a distance map and a closest pixel map. The distance map includes the Euclidean distance from each
pixel of the bounding box to the nearest perimeter pixel of the selected token t.. The closest pixel map identifies, for
each pixel in the distance map, which perimeter pixel is the closest to it.

[0116] In step 310, the CPU 12 scans the distance map generated in step 308 to identify tokens corresponding to
pixels of the bounding box (from the region map generated via the routine of figure 6a), to identify a token from among
all tokens represented by pixels in the bounding box, that has a number N, of pixels within the distance D,,,,, wherein
N, is greater than P;,, and greater than F_;, * perimeter pixels of the respective token and the average distance
between the respective token and t,, is the lowest of the tokens corresponding to the pixels in the bounding box. If these
conditions are satisfied, the respective token is designated t,, of a possible token pair t., t,, and alink L, is marked active.
[0117] In step 312, the CPU 12 checks to determine whether a reciprocal link L, is also marked active, and when it
is marked active, the CPU 12 marks and stores in the token graph, an indication that the token pair t, t,, is a neighboring
token pair. The reciprocal link refers to the link status in the evaluation of the token designated as t,, in the current
evaluation. If that token has yet to be evaluated, the pair is not designated as a neighboring token pair until the link L,
is verified as active in the subsequent evaluation of the token t,. The CPU 12 then returns to decision block 304 to
determine whether there are any further tokens in the set T...

[0118] Upon completion of the token graph, the CPU 12 utilizes token pair information stored in the graph in the
execution of the routine of figure 10. Figure 10 shows a flow chart for constructing Type B tokens via the adjacent planar
token merging technique, according to a feature of the presentinvention. In the adjacent planer merging technique, pairs
of tokens are examined to determine wether there is a smooth and coherent change in color values, in a two dimensional
measure, between the tokens of the pair. The color change is examined in terms of a planar representation of each
channel of the color, for example the RGB components of the pixels according to the exemplary embodiments of the
present invention. A smooth change is defined as the condition when a set of planes (one plane per color component)
is a good fit for the pixel values of two neighboring tokens. In summary, neighboring tokens are considered the same
material and a Type B token when the color change in a two-dimensional sense is approximately planar.

[0119] In step 320, the CPU 12 selects a token pair t, t, from the token graph. In decision block 322, the CPU 12
determines whether the mean color in token t,, is significantly different from the mean color in the token t.. The difference
can be a function of a z-score, a known statistical measurement (see, for example, Abdi, H. (2007), Z-scores, in N.J.
Salkind (Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks, CA: Sage), for example, a z-score greater
than 3.0.

[0120] If the mean colors of the token pair are different, the CPU 12 proceeds to decision block 324 to determine
whether there are any additional token pairs in the token graph. If yes, the CPU 12 returns to step 320. If no, the CPU
12 exits the routine (step 326).

[0121] If the mean colors are within the z-score parameter, the CPU 12 proceeds to step 328. In step 328, the CPU
12 performs a mathematical operation such as, for example, a least median of squares regression (see, for example,
Peter J. Rousseeuw, Least Median of Squares Regression, Journal of the American Statistical Association, Vol. 79, No.
388 (Dec., 1984), pp. 871-880) to fit a plane to each color channel of the pixels (in our example RGB) of the token pair
t., t, a@s a function of row n and column m (see figure 2), the planes being defined by the equations:

R=Xpa* YrntZp G=XgntYomt+tZs B=Xpg,*+ Yp,+7Zs

wherein parameter values X, Y and C are determined by the least median of squares regression operation ofthe CPU 12.
[0122] Upon completion of the plane fitting operation, the CPU 12 proceeds to step 330. In step 330, the CPU 12
examines each pixel of each of the tokens of the token pair t, t, to calculate the z-score between each pixel of the
tokens and the planar fit expressed by the equation of the least median of squares regression operation. When at least
a threshold percentage of the pixels of each token of the pair (for example, 80%), are within a maximum z-score (for
example, 0.75), then the neighboring token pair is marked in the token graph as indicating the same material in the
image. After completion of step 330, the CPU 12 returns to decision block 324.

[0123] Upon exiting the routine of figure 10, the CPU 12 examines the token graph for all token pairs indicating the
same material. The CPU 12 can achieve the examination through performance of a known technique such as, for
example, a union find algorithm. (See, for example, Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms

for disjoint set union problems, ACM Computing Surveys, Volume 23, Issue 3 (September 1991), pages 319-344). As
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asimple example, assume a set of seven Type C tokens Ty, Ty, T3, T4, T5, T, T7. Assume that the result of the execution
of figure 9, (performance of the adjacent planar analysis), indicates that tokens T, and T, are marked as the same
material, and tokens T and T5 are also marked as the same material. Moreover, the results further indicate that tokens
T4 and T are marked as the same material, and tokens T5 and T¢ are also marked as the same material. The result of
execution of the union find algorithm would therefore indicate that tokens {T, T,, T4} form a first group within the image
consisting of a single material, tokens {T,, T5, Tg} form a second group within the image consisting of a single material,
and token {T} forms a third group within the image consisting of a single material. The groups {T, Ty, T3}, {T4, Ts5, Tg}
and {T} form three Type B tokens.

[0124] A third exemplary technique according to the present invention, for using Type C tokens to create Type B
tokens, is a local token analysis. A local token approach generates Type C tokens using a window analysis of a scene
depicted in an image file 18. Such tokens are designated as Type C,, tokens. Figure 11 is a flow chart for generating
Type C,, tokens via the local token analysis technigue, according to a feature of the present invention.

[0125] Instep400,the CPU 12 places a window of fixed size, for example, a 33x33 pixel array mask, over a preselected
series of scan positions over the image. The window can be a shape other than a square. The scan positions are offset
from one another by a fixed amount, for example ¥> window size, and are arranged, in total, to fully cover the image.
The window area of pixels at each scan position generates a Type C,, token, though not every pixel within the window
at the respective scan position is in the Type C,, token generated at the respective scan position.

[0126] Ateach scan position (step 402), the CPU 12 operates, as a function of the pixels within the window, to fit each
of a set of planes, one corresponding to the intensity of each color channel (for example, RGB), and an RGB line in RGB
space, characterized by a start point I and an end point 14 of the colors within the window. The planar fit provides a
spatial representation of the pixel intensity within the window, and the line fit provides a spectral representation of the
pixels within the window.

[0127] For the planar fit, the planes are defined by the equations:

R=Xpt YentZy G=Xg+Yont+tZs B=Xp+ Yp,+Zs

wherein parameter values X, Y and C are determined by CPU 12 by executing a mathematical operation such as the
least median of squares regression discussed above, a least-squares estimator, such as singular value decomposition,
or a robust estimator such as RANSAC (see, for example, M. A. Fischler, R. C. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol
24, pp 381-395, 1981).

[0128] For the RGB line fit, the line is defined by:

I(r,9.b)=lg(r.g,b) + t(14(r,g,b) - 15(r,g,b)) wherein the parameter t has a value between 0 and 1, and can be determined by
the CPU 12 utilizing any of the mathematical techniques used to find the planar fit.

[0129] At each scan position, after completion of step 402, the CPU 12 operates in step 404 to examine each pixel in
the window in respect of each of the planar fit representation and RGB line representation corresponding to the respective
window scan position. Foreach pixel, the CPU 12 determines an error factor for the pixelrelative to each of the established
planes and RGB line. The error factor is related to the absolute distance of the pixel to its projection on either from either
the planar fit or the RGB line fit. The error factor can be a function of the noise present in the recording equipment or
be a percentage of the maximum RGB value within the window, for example 1%. Any pixel distance within the error
factor relative to either the spatial planar fit or the spectral line fit is labeled an inlier for the Type C,, token being generated
at the respective scan position. The CPU 12 also records for the Type C,, token being generated at the respective scan
position, a list of all inlier pixels.

[0130] At each scan position, after completion of step 404, the CPU 12 operates in step 406 to assign a membership
value to each inlier pixel in the window. The membership value can be based upon the distance of the inlier pixel from
either the planar fit or the RGB line fit. In one exemplary embodiment of the present invention, the membership value is
the inverse of the distance used to determine inlier status for the pixel. In a second exemplary embodiment, a zero-
centered Gaussian distribution with a standard deviation is executed to calculate membership values for the inlier pixels.
[0131] After all of the scan positions are processed to generate the Type C,, tokens, one per scan position, the CPU
12 operates to compile and store a token data list (step 408). The token data list contains two lists. A first list lists all of
the pixels in the image file 18, and for each pixel, an indication of each Type C,, token to which it labeled as an inlier
pixel, and the corresponding membership value. A second list lists all of the generated Type C,, tokens, and for each
token an indication of the inlier pixels of the respective token, and the corresponding membership value. After compiling
and storing the token data list, the CPU 12 exits the routine (step 410).

[0132] Figure 12 is a flow chart for constructing Type B tokens from the Type C,, tokens generated via the local token
analysis technique, according to a feature of the present invention. In step 420, the CPU 12 calculates a similarity of
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parameters of the spatial planer dimensions and spectral RGB lines of adjacent or overlapping Type C,, tokens generated
through execution of the routine of figure108. Overlapping and adjacent Type C,, tokens can be defined as tokens
corresponding to scan positions that overlap or are contiguous. A similarity threshold can be set as a percentage of
difference between each of the spatial planer dimensions and spectral RGB lines of two overlapping or adjacent Type
C,, tokens being compared. The percentage can be a function of the noise of, for example, the camera 14 used to record
the scene of the image file 18. All overlapping or adjacent Type C,, token pairs having a calculated similarity within the
similarity threshold are placed on a list.

[0133] In step 422, the CPU 12 sorts the list of overlapping or adjacent Type C,, token pairs having a calculated
similarity within the similarity threshold , in the order of most similar to least similar pairs. In step 424, the CPU 12 merges
similar token pairs, in the order of the sort, and labeling pairs as per degree of similarity. Each merged token pair will
be considered a Typep token. In step 426, the CPU 12 stores the list of Typeg tokens, and exits the routine.

[0134] In afurther exemplary embodiment of the present invention, the CPU 12 (executing as the operators block 28)
compiles lists of Type B tokens separately generated through each of and/or a combination of one or more of the arbitrary
boundary removal, adjacent planar token merging, and local token analysis techniques. The determination of the com-
bination of techniques used depends in part on whether a particular region of the image was filtered because of texturing
of the image. Since each Type B token generated through the described techniques likely represents a single material
under varying illumination conditions, merging sufficiently overlapping Type B tokens generated through the use of
varying and different techniques, provides a resulting, merged Type B token that represents a more extensive area of
the image comprising a single material, and approaches the extent of a Type A token.

[0135] Sufficiently overlapping can be defined by satisfaction of certain pixel characteristic criteria, such as, forexample:

A) The two Type B tokens have at least n of the original Type C tokens in common, for example, h =1

B) The two Type B tokens have at least n pixels in common, for example, n = 20

C) The two Type B tokens have at least n% overlap, that is at least n% of the pixels in a first one of the two Type
B tokens are also found in the second one of the two Type B tokens or vice versa, wherein, for example n% = 10%.
D) The percentage of pixels in a smaller one of the two Type B tokens, also found in the larger one of the two Type
B tokens is above a preselected threshold, for example 15%.

E) A preselected combination of criteria A-D.

[0136] Merging of two sufficiently overlapping Type B tokens can be accomplished via a mathematical operation such
as execution of the union find algorithm discussed above. In the case of two overlapping Type B tokens that do not
satisfy the above discussed criteria, the overlapping pixels of the two tokens can be assigned to the larger one of the
two Type B tokens.

[0137] As aresult of execution by the Type C tokenization block 35 and/or the operators block 28 (via the CPU 12) of
the token generation and merging techniques according to features of the present invention, an image can be accurately
segmented into tokens representing discrete materials depicted in the scene (Type B tokens) and tokens representing
regions of robust similar color (Type C tokens), thus providing a basis for computational efficiencies, as the token
representations capture spatio-spectral information of a significant number of constituent pixels. The service provider
24 stores all of the Type C and Type B tokens generated through execution of the above described token generation
techniques, along with the relevant token map information, for example, as determined during execution of the adjacent
planar token merging technique, and cross-references the stored operator results to the associated selected image file
18, for use inany segregation processing of the selected image. The cross reference information also includes information
on the various selectively varied representations (image files 18a ...18n) that may have been subject to a tokenization
operation.

[0138] In our example of a same illumination constraint, the service provider 24 identifies Type C and Type B tokens
as the operators required by the selected constraint. The Type C tokenization block 35 generated the Type C tokens.
The service provider 24 operates the operators block 28 to execute the above described techniques, to generate the
relevant Type B tokens for the image 32, as well as a token map. The constraint builder 26 organizes the generated
token operators according to the exemplary matrix equation, [A] [x] = [b], for input to the solver 30. In the same illumination
constraint, the constraining relationship of the relevant constraint generator software module is that adjacent Type C
tokens, as indicated by the token map information, are lit by the same illumination, unless the adjacent Type C tokens
are part of the same Type B token.

[0139] According to the multi-resolution exemplary embodiment of the present invention, the tokenization processes
can be executed by the CPU 12 in respect to the criginal image file 18 or any of the selectively varied representations,
image files 18a ... 18n, and constraints applied at any level.

[0140] Each Type C token stored by the service provider 24 is identified by a region ID, and includes a listing of each
constituent pixel by row and column number (and a cross reference to the associated image file wherein the token was
identified (image files 18, 18a ...18n)). Each pixel of a Type C token will be of approximately the same color value, for
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example, in terms of RGB values, as all the other constituent pixels of the same Type C token, within the noise level of
the equipment used to record the image. An average of the color values for the constituent pixels of each particular Type
C token can be used to represent the color value for the respective Type C token. Each Type B token is identified by
constituent Type C tokens, and thus can be processed to identify all of its constituent pixels via the respective constituent
Type C tokens.

[0141] Pursuant to a feature of the present invention, a model for image formation reflects the basic concept of an
image as comprising two components, material and illumination. This relationship can be expressed as: |1 = ML, where
| is the image color, as recorded and stored in the respective image file 18 and/or convolved in representations 18a ...
18n, M the material component of the recorded image color and L the illumination component of the recorded image
color. The I value foreach Type C token is therefore the average color value for the recorded color values of the constituent
pixels of the token.

[0142] Thus: log(l) =log (ML) =log (M) + log(L). This can be restated as i= m + /, where irepresents log(l), mrepresents
log(M) and / represents log(L). In the constraining relationship of the same illumination constraint, in an example where
three Type C tokens, a, b and ¢, (see figure 13) are adjacent (and not within the same Type B token, (as can be shown
by a comparison of row and column numbers for all constituent pixels)), /I, =/, = /.. Since: I, =i, - m,, I, =i, - mp, and
I, = i, - m,, these mathematical relationships can be expressed as (1)m, + (-1)my, + (0)m, = (i, - ip), (1)m, + (O)m,, +
(-1ymg = (iy-i;) and (O)m, + ()mp + (-1)m, = (i, - i)

[0143] Figure 13 shows a representation of an [A] [x] = [b] matrix equation for the mathematical relationships of the
example of the three adjacent Type C tokens a, b and ¢ described above, as constrained by the same illumination
constraint: the adjacent Type C tokens a, b and ¢ are at the same illumination. In the matrix equation of figure 15, the
various values for the log (1), in the [b] matrix, are known from the average recorded pixel color values for the constituent
pixels of the adjacent Type C tokens a, b and ¢, generated by the Type C tokenization block 35 from the image selected
for segregation. The [A] matrix of 0’s, 1’s and -1's, is defined by the set of equations expressing the selected same
illumination constraint, as described above. The number of rows in the [A] matrix, from top to bottom, corresponds to
the number of actual constraints imposed on the tokens, in this case three, the same illumination between three adjacent
Type C tokens. The number of columns in the [A] matrix, from left to right, corresponds to the number of unknowns to
be solved for, again, in this case, three. Therefore, the values for the material components of each Type C token a, b
and ¢, in the [x] matrix, can be solved for in the matrix equation. It should be noted that each value is actually a vector
of three values corresponding to the RGB color bands of our example.

[0144] Accordingly, the matrix equation of figure 13, as arranged by the constraint builder 26, is input by the constraint
builder 26 to the solver 30 for an optimized solution for the values of the material components of the adjacent Type C
tokens a, b and c of the selected image. As noted above, in the exemplary GUI embodiment of the present invention, a
user selects one of several mathematical techniques for finding the optimal solution to the system of constraint equations,
[A] [x] = [b]. The CPU 12 configures the solver 30 according to the mathematical operation selected by the user.
[0145] Forexample, in a standard least squares solver, the matrix equation is restated as \underset{x} {min}(Ax - b)2.
The solver 30 then executes the least squares operation to determine optimized values for each of m,, m, and m... The
solver 30 can then proceed to generate and display a material image based upon the optimal m,, m, and m_ values. In
the material image, the m,, my, and m_ values are substituted for the originally recorded RGB values, for each pixel of
the respective tokens. The solver 30 can proceed to also generate an illumination image from the known recorded image
values ig, fy, i, and the determined m,, m, and m, values, utilizing the model expressed by i=m + /.

[0146] Each of the material and illumination images are displayed on the monitor 20, via, for example, the GUI (see
figure 5) and can be stored by the service provider 24, and cross-referenced to the original image file 18. According to
a feature of the present invention, intrinsic images generated from the representations image files 18a ... 18n by per-
formance of the above described spatio-spectral operator/constraint/sclver process, are also stored by the service
provider 24.

[0147] As noted above, the spatio-spectral operator/constraint/solver process can be efficiently executed by the CPU
12 first in respect of the relatively coarse representation depicted in image file 18a. Thereafter, the solver (executing via
the CPU 12) is constrained by the weighted average for color equation described above, when solving for an illumination
image and/or material image for the fine scale original image file 18. Moreover, according to a further exemplary em-
bodiment of the present invention, the spatio-spectral operator/constraint/solver process can be executed by the CPU
12 selectively relative to the various representations of the image. For example, only regions of the image file 18 having
edges, are tokenized, while all regions of uniform color within the relatively coarse image file 18a are tokenized, for a
division of processing, as described above.

[0148] According to a further feature of the present invention, the solver 30 can be configured to introduce factors
including bounds that capture the limits of real world illumination and material phenomena, to keep material/illumination
values determined by the optimization procedures as solutions, [x], to within physically plausible ranges. This can be
implemented, for example, in an iterative technique to introduce additional inequality constraints on out-of-bounds values
in [x], at each iteration, and executed to resolve towards values within the defined bounds. Thus, the above described
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least squares technigue can be augmented to include minimum and maximum bounds on individual material estimates
(as expressed by the entries of [x]). Moreover, the entries of [x] can be regularized such that the material estimates are
consistent with a priori knowledge of material properties.

[0149] In an exemplary embodiment of the present invention, the matrices used in the least squares solver to specify
the selected constraints, [A] and [b] are subject to the following bounds, expressed by the problem:

a linear least squares formulation : min,. : ¥;(A,TX - )2 subject to:

x 2ol
X <w,l

X’ 2 img;

where 1 denotes the vector of all ones, a,,,, the darkest possible material value (for example, a material cannot be darker
than coal), and o, the brightest possible material value. The imgj value is the log intensity value at a particular token
Jj, to provide a constraint based upon the real world observation that a segregated material color cannot be darker than
it appeared in the original image, since illumination can only brighten the apparent color of an observed material.
[0150] In the linear least squares formulation, the unique minimum solution for X’ is the material map that minimizes,
in a linear system expressed by AT Ax’ = AT ¢, the average squared difference between the target material differences
t;and the estimated differences ATx. For example, if the "ith" constraint A, dictates that two tokens a & b are the same
material, ATAX' takes the difference between the values of tokens a & b in X’ and computes the distortion from the target
value t;= 0.

[0151] The inequalities expressed by the "subject to" bounds set forth above, form a feasible set of material solutions
X’ which satisfy the real world constraints of possible maximum and minimum material color values. This differs from the
standard, known least squares solution in that x’, if not further constraint by the "subject to" bounds, could take on a
value at a given location of an image (for example, at a particular pixel or token) that violates the real world observations
of reflectance, yet achieves a more optimal solution for the min x’ formulation.

[0152] In the optimization process executed by the solver 30, whenever any tokens have material color values that
violate the "subject to" inequalities, at a particular iteration of the process, additional temporary constraints are added
that pin the material values in violation, to values that satisfy the bounding conditions. Thus, the original matrices [A]
and [b] are augmented with new matrices specifying the new bounding constraints Aygyndgs @Nd Ppounds (8s an expression
of the "subject to" bounds) to define a new augmented system of matrix equations [A; Aygundgs] [X] = [P, Ppoungsl- The
augmented system of equations can be solved analogously to the original system, for example, using the known least
squares procedure.

[0153] In accordance with the above described bounded feature of the present invention, additional, temporary con-
straints are added whenever color values violate real world phenomena. A re-solving of the augmented equations can
be repeated, as necessary, starting with the ariginal system ATAX = AT¢, each time (i.e. the temporary bounding constraints
need not be carried over between iterations), and iteratively solving augmented systems AT A’x’ = AT £ until the "subject
to" bounds are satisfied.

[0154] In accordance with yet another feature of the present invention, an L4, L, objective function provides a regu-
larization of the optimized solution by encoding a preference for a small number of material changes. In effect, the L,
L,, solver includes the a priori belief that material maps should contain a small number of materials in a figure-of-merit.
In the solver of the system, there is a distinction between the objective function, a formula that assigns a figure-of-merit
to every possible solution, and the algorithm used to find a solution, an optimal value according to a given objective
function. As the problem in our exemplary embodiment is stated as a minimization, min,. : ¥(ATx’ - t)2, the value an
objective function assigns can be characterized as a "cost."

[0155] Inour problem, let X’ be a matrix of a number of rows of tokens and a number of columns of color bands, where
x’® denotes the cth column associated with the cth color band. The least squares objective function, in formula, is aug-
mented, as follows:

min, : X, X (ATX’C - £} + ¥ Ly, max, |A,X|

where y|y > 0 governs the trade-off between the cost associated with the least squares term and the Ly, L, penalty. The
expression 2y Max, |ATx'e| accumulates the maximum per-channel absolute difference over all the same material
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constraints in [A].

[0156] For example, given a same material constraint between tokens a & b, the L, L, function will only include a
term for a color channel with the largest difference in between x°, and x%, aver color channel c. In an exemplary
embodiment of the present invention, the optimization procedure, for example as expressed by the objective function
min, : X T (ATXC - 191)2 + ¢ 2tk Max, |A,Tx'q, is a shrinkage technique. That is, a sequence of least squares problems
is solved in a manner wherein, at each round, constraint targets determined to violate the same material constraint are
shrunk. At the end of the sequence, constraints with a value below a given threshold are culled from the constraint
system, and a new least squares solution is computed. It should be noted that bounds such as the "subject to" bounds
discussed above, can be added to the objective function to provide a bounded L4, L,, solver.

[0157] Figure 14 is a generalized functional block diagram for the service provider 24 and constraint builder 26. To
summarize the above described constraint examples in a general scheme, a selection is made of an image 32, (one or
more of image file 18, 18a, ... 18n) and, for each selected image 32, a number of constraint generators from a set of
constraint generators 1, 2, ...N, (the constraint generator software modules) for example, by a user, via the GUI. The
set of constraint generators 1-N includes the constraints described above, and any additional constraining relationships
developed as a function of spatio-spectral information for an image. The above described set of constraints is provided
as an example. The presentinvention contemplates any constraining relationship based upon spatio-spectral operators,
that provides a logical deduction regarding material and illumination aspects of animage, and thus a basis for constructing
matrices [A] and [b] to define a set of equations whose optimal sclution captures intrinsic illumination and material
components of a given image.

[0158] Likewise, a set of operators 1-M, generated by the Type C tokenization block 35 or the operators block 28,
includes all operators defined in the constraint generator modules 1-N. As shown in figure 14, the service provider 24
provides all of the operators 1-M, as required by the selected constraint generators 1-N and further couples the selected
constraint generators 1-N to a constraint assembly 39 via a logical switch 40 (both configured within the constraint builder
26). In the event any of the operators 1-M for a selected image 32 are not already stored by the service provider 24, the
service provider 24 utilizes the operators block 28 to compute such operators on demand, in the manner described
above. The constraint assembly 39 constructs a separate [A] [X] = [b] matrix for each one of the selected constraint
generators, asafunctionofthe operators and the constraining relationships defined in the respective constraint generators
1-N. In each case, the [A] [x] = [b] matrix is constructed in a similar manner as described above for the same illumination
example.

[0159] Upon completion of the construction of the system of equations [A]; [x] = [b];, for each of the selected constraint
generators, i={1, 2, ...N}, the constraint assembly 39 concatenates the constituent matrices [A];, [b];, from each constraint
generator. Since each of the concatenated equations may contain a different subset of the unknowns, [x], the assembly
is performed such that corresponding columns of individual matrices [A];, that constrain particular unknowns in [x], are
aligned. The concatenated matrices, [A] [x] = [b], are then input to the solver 30, for solution of the unknowns in the
complete [x] vector, pursuant to the selected optimization procedure, for output of intrinsic images 34. The individual
constraints within the concatenated matrices, [A] [x] = [b], can be weighted relative to one another as a function of factors
such as perceived importance of the respective constraint, strength or empirically determined confidence level.

[0160] The above described example of a same illumination constraint utilizes Type C token and Type B token spatio-
spectral operators. These token operators provide an excellent representation of images thatinclude large surface areas
of a single material, such as are often depicted in images including man-made objects. As such, processing of the image
at a coarse scale of resolution, for example, at the level of image file 18a, is possible. However, in many natural scenes
there are often large areas of highly textured regions, such as sand, grass, stones, foliage, and so on. Each texture has
an intrinsic scale, which can be correlated to one of the scale representations of image files 182, ...18n. As noted above,
identification of Type B tokens using Type C tokens, can be difficult in an image texture, particularly at a fine scale of
resolution. According to a further feature of the present invention, a texton histogram operator provides a mechanism
for capturing statistically uniform spatial variations of textured regions in a manner that is useful in a constraint based
optimization, for example, as expressed by the [A] [x] = [b] matrix equation.

[0161] Thus, accordingto this feature of the present invention, rather than generating Type C tokens intextured regions
of an image, from intensity histograms, for use in identifying Type B tokens, as described above, texture tokens are
generated as a species of Type B tokens, for use in a constraint. Such a texture token analysis can be performed , for
example, at a preselected scale suitable to the scale of the texture, for a more efficient and accurate analysis. In an
exemplary embodiment of the texton histogram operator, the operators block 28 converts each pixel of the image (or
pixels of those regions of an image identified as comprising a texture) from the recorded color band representation of
the respective image file 18, such as, for example, RGB color band values, to a two band representation wherein the
two bands comprise a texton label and a texton histogram label. The two band representations for the pixels are then
used to identify texture tokens, as will appear.

[0162] A texton label for each pixel is generated through execution of a clustering process. A texture can be charac-
terized by a texture primitive (for example, in a grass texture, a single blade of grass), and the spatial distribution of the
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primitive. A texton analysis is an analytical method for characterizing a texture primitive, for example via a clustering
algorithm. Clustering is a process for locating centers of natural groups or clusters in data. In an exemplary embodiment
of the present invention, the data comprises pixel patches selected from among the pixels of an image being segregated
into material and illumination components. For example, 3 X 3 pixel patches are clustered into K different groups, with
each group being assigned a designating number (1,2,3, ...K). The texton label for each pixel of the 3 X 3 array is the
group number of the group to which the respective patch was assigned during the clustering process.

[0163] To expedite execution of a clustering algorithm, random samples of 3 X 3 patches can be selected throughout
the image, or region of the image identified as comprising a texture, for processing in a clustering algorithm. After
execution of the clustering algorithm by the CPU 12 (operating as the operators block 28), each 3 X 3 patch of the image
is assigned the texton label of the closest one of the K group centers identified in the clustering process, as executed
in respect of the selected random samples.

[0164] To advantage, prior to execution of a clustering algorithm, the pixels of the image are subject to an image
intensity normalization. In a clustering process utilizing an intensity-based distance matrix, dark areas of an image may
be placed in a single group, resulting in an under representation of groups for shadowed areas of a textured region of
animage. A normalization of the image provides a more accurate texton representation for texture regions under varying
illumination. A normalized intensity for a pixel can be expressed by:

inorm(n:m) = lOg (i(nam)/ib(n:m))>

where i ,.m(n,m) is the normalized intensity for a pixel p(n,m), i(n,m) is the intensity for the pixel p(n,m), as recorded in
the image file 18, and iy,(n,m) is a blurred or low passed filtered version of the pixel p(n,m). For example, a 10 pixel blur
radius can be used in any standard blurring function.

[0165] Clustering can be executed according to any known clustering algorithm, such as, for example, K means
clustering where there are K clusters or groups S;, i = 1,2, ...K, and y, is the mean point or center point of all the data
points X € S, . In our example, each X comprises a selected 3 X 3 pixel patch arranged as a 9 X 1 vector of the nine
pixels in the patch (27 elements total, including the RGB values of each of the nine pixels of the vector). As noted above,
each mean point p, is assigned a texton label, 1, 2, 3 ...K, that becomes the texton label for any pixel of a 3 X 3 patch
clustered into the group for which the respective mean point is the center.

[0166] According to an exemplary embodiment of the presentinvention, the CPU 12 executes the algorithm by initially
partitioning the selected 9 X 1 vectors, representing 3 X 3 pixel patches of the image, into K initial groups S;. The CPU
12 then calculates a center point w,;, for each group §,, utilizing an intensity-based distance matrix. After determining a
center point w;, for each group S;, the CPU 12 associates each 9 X 1 vector to the closest center point p;, changing
groups if necessary. Then the CPU 12 recalculates the center points ;. The CPU 12 executes iterations of the steps of
associating each 9 X 1 vector to the closest center point p;, and recalculating the center points p;, until convergence.
Convergence is when there is no need to change the group for any of the 9 X 1 vectors. Atthat point, the CPU 12 assigns
the group number for the respective center point p;, as the texton label for the pixels of each vector in that group.
[0167] As noted above, pixels of 3 X 3 patches not selected as samples for clustering are assigned the texton label
of the closest one of the K group centers p,;, identified in the clustering process, as executed in respect of the selected
random samples. A texton label map is stored by the service provider 24, and is coextensive with the pixel array of figure
2. In the texton label map, for each pixel location, there is an indication of the respective texton label.

[0168] Upon completion of the texton label assignment for pixels of the image, the CPU 12 operates to generate a
texton histogram for each pixel to provide a representation of the spatial variation of texton representations within a
textured region of the image. To that end, the CPU 12 accesses the texton label map. At each pixel location within the
texton label map, a pixel patch of, for example, 21 X 21 pixels, is set up around the current location. The 21 X 21 patch
size is far greater than the 3 X 3 patch sized used to generate the texton representations, so as to capture the spatial
variations of the texture. A texton histogram is then generated for the pixel location at the center of the 21 X 21 patch,
in a similar manner as the intensity histogram described above. However, rather than bins based upon color band values,
in the texton histogram, there is a bin for each texton label value, 1,2, 3 ...K. The count for each bin corresponds to the
number of pixels in the 21 X 21 patch having the texton label value for the respective bin.

[0169] When a texton histogram is generated for each pixel of the texton label map, the CPU 12 executes a second
clustering step. In the second clustering step, the texton histograms are clustered using spectral clustering. Spectral
clustering techniques use a spectrum of a similarity matrix of data of interest, (in our example, the texton histograms)
to reduce the dimensionality for clustering in fewer dimensions. A similarity matrix for a given set of data points A can
be defined as a matrix S where Sij represents a measure of the similarity between points i, j € A. In our example,
eigenvectors of the Laplacian are clustered using a mean shift. The distance metric is a chi-squared distance of the
histograms.

[0170] A texton histogram label (1,2 ...) is assigned to each cluster group defined by the clustering procedure. For

22



10

15

20

25

30

35

40

45

50

55

EP 2 435 956 B1

each pixel of the texton label map, the texton histogram label for the cluster group corresponding to a texton histogram
that is nearest the texton histogram for the respective pixel, is assigned to that pixel. Distance is defined as the chi-
squared histogram distance. Upon completion of the assignment of a texton histogram label to each pixel, each pixel is
now represented by a two band, texton label, texton histogram label representation.

[0171] Accordingto afeature of the presentinvention, the two band, texton label, texton histogram label representations
for pixels of an image file 18 (or any of the selectively varied representations 18a, ...18n) can be utilized in a constraint
for construction of an [A]; [x] = [b]; constituent within the concatenated matrices, [A] [x] = [b]. For example, it can be
assumed that a region of an image wherein contiguous pixels within the region all have the same two band, texton label,
texton histogram label representation, comprises a region of the same mean material of a texture depicted in the image.
Such a region can be referred to as a texture token, a species of a Type B token. Thus, a constraint can be imposed
that all Type C tokens within the same texture token are of the same mean material. In this constraint, the Type C tokens
are the Type C tokens generated from the color band values of the constituent pixels by the Type C tokenization block 35.
[0172] While the above exemplary embodiment of the present invention has been described with a user selecting
constraint generators and mathematical operations via a GUI, the image segregation processing can be done in other
operating modes, such as automatically, with images, constraint generators and mathematical operations being auto-
matically selected, for example, as a function of image parameters.

[0173] Referring once again to figure 3a, in block 1006, the CPU 12 outputs the intrinsic images generated in the
image segregation block 1004. Such intrinsic images can be advantageously used in such applications as object rec-
ognition, or forimproved results in an image modification. For example, a color correct gamma correction can be achieved
by performing an intensity adjustment on the illumination image, and merging the intensity adjusted illumination image
with the corresponding material image, for a color correct, intensity adjusted output image.

[0174] In summary, the selectively varied representation embodiment of the present invention provides modes of
operation that permit spatio-spectral operators to be computed and applied at any one of several different representations
of the image, for example, a representation at a scale of resolution that matches the intrinsic scale of an image feature.
Also, different areas of the image can be processed at different scales, such as edge regions at a fine scale, and non-
edge regions at a coarse scale. Moreover, a constraint can be applied over a limited extent of one representation of the
image and projected to a more coarse scale to extend the range of the constraint. All of the various modes afforded by
the selectively varied representation embodiment of the present invention improve the accuracy of an image segregation
operation, while providing efficiencies that speed up the performance of the computer system 10.

[0175] In the preceding specification, the invention has been described with reference to specific exemplary embod-
iments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto
without departing from the scope of the invention as set forth in the claims that follow. The specification and drawings
are accordingly to be regarded in an illustrative manner rather than a restrictive sense.

Claims
1. An automated, computerized method for processing an image (32), comprising the steps of:

providing an image file (18) depicting an image (32), in a computer memory (16);

forming a set of selectively varied representations (18a, 18b, ..., 18n) of the image file (18) by forming multi-
resolution representations of the image (32); and

performing an image segregation operation on at least one preselected representation (18a, 18b, ..., 18n) of
the image (32) of the image file (18) as a function of an image segregation of another one of the set of selectively
varied representations (18a, 18b, ..., 18n) of the image (32), to generate intrinsic images (34) corresponding to
the image (32), by utilizing a spatio-spectral operator/constraint/solver model, which includes

generating spatio-spectral operators, spatio-spectral operators being a mathematical representation of spatio-
spectral information, spatio-spectral information being information on spectral relationships among contiguous
pixels, in terms of color bands, and the spatial extent of the pixel spectral relationships, introducing constraints
between spatio-spectral operators, each constraint defining the spatio-spectral operators used by the constraint
and a constraining relationship imposed upon these used spatio-spectral operators, expressing the constraints
in a matrix equation Ax=b, wherein A is a matrix of values determined by the definition of the spectral operators
and the constraining relationships for the spectral operaters, b is a matrix of values observed in the image (32)
or in a selectively varied representation (18a, 18b, ..., 18n) of the image (32), and x is a matrix of values to be
solved for for generating the intrinsic images (34), and solving for the matrix x,

wherein one constraint constrains a weighted average of material color at a local area of a relatively finer scale
representation to equal the material color of a corresponding local area of a relatively coarser scale represen-
tation.
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2. The method of claim 1 wherein the multi-resolution representations of the image (32) comprise a scale-spaced
pyramid of representations.

3. The method of claim 1 wherein the intrinsic images (34) comprise a material image and an illumination image.

4. The method of claim 1 wherein the step of utilizing a spatio-spectral operator/constraint/solver model is carried out
by generating spatio-spectral operators at each of different ones of the selectively varied representations (18a,
18b, ..., 18n) of the image (32), and implementing a constraint as afunction of the spatio-spectral operators generated
at each of different ones of the selectively varied representations (18a, 18b, ..., 18n) of the image (32).

5. The method of claim 4 wherein the spatio-spectral operators include a weighted color average.

6. The method of claim 1 wherein the step of performing an image segregation operation on at least one preselected
representation (18a, 18b, ..., 18n) of the image (32) of the image file (18), to generate intrinsic images (34) corre-
sponding to the image (32), is carried out by performing an image segregation operation in respect of preselected
regions of at least one preselected representation (18a, 18b, ..., 18n) of the image (32) of the image file (18).

7. The method of claim 6 wherein the step of performing an image segregation operation in respect of preselected
regions of at least one preselected representation (18a, 18b, ..., 18n) of the image (32) of the image file (18) is
carried out by performing an image segregation operation in respect of different preselected regions of at least two
of the set of selectively varied representations (18a, 18b, ..., 18n) of the image (32).

8. The method of claim 1 wherein the step of performing an image segregation operation on at least one preselected
representation (18a, 18b, ..., 18n) of the image (32) of the image file (18) is carried out over a limited extent of the
at least one preselected representation (18a, 18b, ..., 18n) of the image (32).

9. The method of claim 8 wherein the function of an image segregation of another one of the set of selectively varied
representations (18a, 18b, ..., 18n) of the image (32) includes a projection of the image segregation operation carried
out over a limited extent of the at least one preselected representation (18a, 18b, ..., 18n) of the image (32) to
another one of the set of selectively varied representations (18a, 18b, ..., 18n) of the image (32).

10. A computer system (10) which comprises:

a CPU (12); and
a memory (16) storing an image file (18) containing an image (32);

the CPU (12) is arranged and configured to execute a routine to perform the method of claim 1.

Patentanspriiche
1. Automatisiertes, computergestitztes Verfahren zum Verarbeiten eines Bilds (32), umfassend die folgenden Schritte:

Bereitstellen einer Bilddatei (18), die ein Bild (32) zeigt, in einem Computerspeicher (16);

Bilden eines Satzes von selektiv variierten Darstellungen (18a, 18b, ...., 18n) der Bilddatei (18) durch Bilden
von Mehrfachaufldsungsdarstellungen des Bilds (32); und

Durchflhren eines Bildaufspaltungsvorgangs an mindestens einer vorausgewahlten Darstellung (18a, 18b, ...,
18n) des Bilds (32) der Bilddatei (18) als eine Funktion einer Bildaufspaltung einer anderen des Satzes selektiv
variierter Darstellungen (18a, 18b, ..., 18n) des Bilds (32), um intrinsische Bilder (34) zu erzeugen, die dem Bild
(32) entsprechen, unter Verwendung eines rdumlich-spektralen Operator-/Einschriankungs-/Losermodells, das
das Erzeugen raumlich-spektraler Operatoren umfasst, wobei raumlich-spekirale Operatoren eine mathemati-
sche Darstellung von raumlich-spektralen Informationen sind, wobei raumlich-spekirale Informationen Informa-
tionen Uber spektrale Beziehungen zwischen benachbarten Pixeln in Bezug auf Farbbander sind, und die
raumliche Reichweite der spektralen Beziehungen der Pixel, wodurch Einschrankungen zwischen denrdumlich-
spektralen Operatoren entstehen, wobei jede Einschrénkung, die die rdumlich-spektralen Operatoren definiert,
die von der Einschrankung verwendet werden, und eine Einschrankungsbeziehung, die diesen verwendeten
raumlich-spektralen Operatoren auferlegt ist, die Einschrankungen in einer Matrixgleichung Ax = b ausdrlckt,
wobei A eine Matrix von Werten ist, die durch die Definition der Spektraloperatoren und der einschrdnkenden
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Beziehungen flr die Spektraloperatoren bestimmt ist, b eine Matrix von Werten ist, die in dem Bild (32) oder in
einer selektiv variierten Darstellung (18a, 18b, ...., 18n) des Bilds (32) beobachtet werden, und x eine Matrix
von Werten ist, die zum Erzeugen der intrinsischen Bilder (34) geldst werden sollen, wobei eine Einschrénkung
einen gewichteten Mittelwert von Materialfarbe an einem lokalen Bereich einer relativ feineren skalierten Dar-
stellung einschrénkt, um die Materialfarbe eines entsprechenden lokalen Bereichs einer relativ gréberen ska-
lierten Darstellung auszugleichen.

Verfahren nach Anspruch 1, wobei die Mehrfachaufldsungsdarstellungen des Bilds (32) eine skaliert-beabstandete
Pyramide von Darstellungen umfassen.

Verfahren nach Anspruch 1, wobei die intrinsischen Bilder (34) ein Materialbild und ein Beleuchtungsbild umfassen.

Verfahren nach Anspruch 1, wobei der Schritt der Verwendung eines rdumlich-spektralen Operator-/Einschran-
kungs-/Losermodells durch Erzeugen von raumlich-spektralen Operatoren an jedem von verschiedenen der selektiv
variierten Darstellungen (18a, 18b, ..., 18n) des Bilds (32) und durch Implementieren einer Einschrankung als eine
Funktion der raumlich-spektralen Operatoren, die an jeder von verschiedenen der selektiv variierten Darstellungen
(18a, 18b, ..., 18n) des Bilds (32) erzeugt werden, durchgefihrt wird.

Verfahren nach Anspruch 4, wobei die raumlich-spektralen Operatoren einen gewichteten Farbmittelwert umfassen.

Verfahren nach Anspruch 1, wobei der Schritt des Ausflihrens eines Bildaufspaltungsvorgangs an mindestens einer
vorausgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32) der Bilddatei (18) zum Erzeugen intrinsischer Bilder
(34) entsprechend dem Bild (32) durch Ausfllhren eines Bildaufspaltungsvorgangs in Bezug auf vorausgewahlte
Bereiche mindestens einer vorausgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32) der Bilddatei (18) durch-
gefuhrt wird.

Verfahren nach Anspruch 6, wobei der Schritt des Ausfilhrens eines Bildaufspaltungsvorgangs in Bezug auf vor-
ausgewahlte Bereiche mindestens einer vorgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32) der Bilddatei
(18) durch Ausflhren eines Bildaufspaltungsvorgangs in Bezug auf verschiedene vorausgewahlte Bereiche von
mindestens zwei aus dem Satz selektiv variierter Darstellungen (18a, 18b, ..., 18n) der Bilddatei (18) durchgefuhrt
wird.

Verfahren nach Anspruch 1, wobei der Schritt des Ausflihrens eines Bildaufspaltungsvorgangs an mindestens einer
vorgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32) der Bilddatei (18) Uiber einen begrenzten Umfang der
mindestens einen vorausgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32) durchgefihrt wird.

Verfahren nach Anspruch 8, wobei die Funktion einer Bildaufspaltung einer anderen aus dem Satz selektiv variierter
Darstellungen (18a, 18b, ..., 18n) des Bilds (32) eine Projektion des Bildaufspaltungsvorgangs umfasst, die Uber
einen begrenzten Umfang der mindestens einen vorausgewahlten Darstellung (18a, 18b, ..., 18n) des Bilds (32)
auf eine andere aus dem Satz selektiv variierter Darstellungen (18a, 18b, ..., 18n) des Bilds (32) durchgeflihrt wird.

Computersystem (10), das Folgendes umfasst:

eine CPU (12); und
einen Speicher (16), der eine Bilddatei (18) speichert, die ein Bild (32) enthalt;

wobei die CPU (12) angeordnet und konfiguriert ist, um eine Routine auszufiihren, um das Verfahren nach Anspruch
1 auszufihren.

Revendications

1.

Procédé automatisé informatisé de traitement d’'une image (32), comprenant les étapes consistant a:

fournir un fichier d'image (18) décrivant une image (32) dans une mémoire d’ordinateur (16);

former un ensemble de représentations (18a, 18b, ..., 18n) sélectivement variées du fichier d’'image (18) en
formant des représentations a résolutions multiples de l'image (32); et

effectuer une opération de ségrégation d’'image sur au moins une représentation présélectionnée (18a, 18b, ...,
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18n) de I'image (32) du fichier d’'image (18) en fonction d’'une ségrégation d'image d’une autre de 'ensemble
des représentations (18a, 18b, ..., 18n) sélectivement variées de l'image (32), pour générer des images intrin-
seques (34) correspondant a I'image (32),en utilisant un modéle opérateur/contrainte/solveur spatio-spectral,
quiinclut la génération d’'opérateurs spatio-spectraux, les opérateurs spatio-spectraux étant une représentation
mathématique d’informations spatio-spectrales, les informations spatic-spectrales étant des informations sur
les relations spectrales entre des pixels contigus, en termes des bandes de couleur et de I'étendue spatiale
des relations spectrales en pixels, introduisant des contraintes entre les opérateurs spatio-spectraux, chaque
contrainte définissant les opérateurs spatio-spectraux utilisés par la contrainte et une relation de contrainte
imposée aux opérateurs spatio-spectraux utilisés, exprimant les contraintes dans une équation matricielle Ax
= b, dans laquelle A est une matrice de valeurs déterminée par la définition des opérateurs spectraux et des
relations de contrainte pour les opérateurs spectraux, b est une matrice de valeurs observées dans I'image
(32) ou dans une variable modifiée de maniére sélective représentation (18a, 18b, ..., 18n) de I'image (32), et
X est une matrice de valeurs a résoudre pour générer les images intrinséques (34), dans laquelle une contrainte
contraint une moyenne pondérée de la couleur du matériau au niveau d’'une zone locale d’une représentation
a échelle relativement fine pour correspondre a la couleur du matériau d’une zone locale correspondante d’une
représentation a I'échelle relativement plus grossiére.

Procédé selon larevendication 1, dans lequel les représentations a résolutions multiples de I'image (32) comprennent
une pyramide de représentations espacées a 'échelle.

Procédé selon la revendication 1, dans lequel les images intrinséques (34) comprennent une image matérielle et
une image d'éclairage.

Procédé selon la revendication 1, dans lequel I'étape d’utilisation d’un modéle opérateur/contrainte/solveur spatio-
spectral est réalisée en générant des opérateurs spatio-spectraux au niveau de chacune des différentes représen-
tations parmi les représentations sélectivement variées (18a, 18b, ..., 18n) de I'image (32), et mettant en oeuvre
une contrainte en fonction des opérateurs spatio-spectraux générés au niveau de différentes représentations parmi
les représentations sélectivement variées (18a, 18b, ..., 18n) de l'image (32).

Procédé selon larevendication 4, dans lequel les opérateurs spatio-spectraux comprennent une moyenne de couleur
pondérée.

Procédé selon la revendication 1, dans lequel I'étape consistant a effectuer une opération de ségrégation d’'images
sur au moins une représentation présélectionnée (18a, 18b, ..., 18n) de I'image (32) du fichier d’image (18), pour
générer des images intrinséques (34) correspondant a I'image (32), est réalisée en effectuant une opération de
ségregationd’image pourdesrégions présélectionnées d’aumoins une représentation présélectionnée (18a, 18b, ...,
18n) de I'image (32) du fichier image (18).

Procédé selon la revendication 6, dans lequel I'étape consistant a effectuer une opération de ségrégation d'image
en ce qui concerne des régions présélectionnées d’au moins une représentation présélectionnée (18a, 18b, ..., 18n)
de I'image (32) du fichier d’image (18) est réalisée en effectuant une opération de ségrégation d'images en ce qui
concerne différentes régions présélectionnées d’au moins deux des ensembles de représentations (18a, 18b, ...,
18n) sélectivement variées du fichier d’image (18).

Procédé selon la revendication 1, dans lequel I'étape consistant a effectuer une opération de ségrégation d'image
sur au moins une représentation présélectionnée (18a, 18b, ..., 18n) de I'image (32) du fichier d'image (18) est
effectuée sur une étendue limitée de la au moins une représentation présélectionnée (18a, 18b, ..., 18n) de 'image
(32).

Procédé selon la revendication 8, dans lequel la fonction de ségrégation d’'image d’un autre parmi l'ensemble des
représentations sélectivement variées (18a, 18b, ..., 18n) de I'image (32) comprend une projection de I'opération
de ségrégation d'image effectuée sur une étendue limitée de la au moins une représentation présélectionnée (18a,
18b, ..., 18n) de I'image (32) par rapport a une autre de 'ensemble des représentations sélectivement variées (18a,
18b, ..., 18n) de la image (32).

10. Un systéme informatique (10) qui comprend:

un processeur (12); et
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une mémoire (16) stockant un fichier d’'image (18) contenant une image (32);

le processeur (12) est agenceé et configuré pour exécuter une routine pour exécuter le procédé de larevendication 1.
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Pixel Array for Storing Image Data
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Examples of Identifying Token Regions in an Image"
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